Jung Rex E, Haier Richard J
Departments of Neurology and Psychology, University of New Mexico, Albuquerque, NM 87106, USA.
Behav Brain Sci. 2007 Apr;30(2):135-54; discussion 154-87. doi: 10.1017/S0140525X07001185. Epub 2007 Jul 26.
"Is there a biology of intelligence which is characteristic of the normal human nervous system?" Here we review 37 modern neuroimaging studies in an attempt to address this question posed by Halstead (1947) as he and other icons of the last century endeavored to understand how brain and behavior are linked through the expression of intelligence and reason. Reviewing studies from functional (i.e., functional magnetic resonance imaging, positron emission tomography) and structural (i.e., magnetic resonance spectroscopy, diffusion tensor imaging, voxel-based morphometry) neuroimaging paradigms, we report a striking consensus suggesting that variations in a distributed network predict individual differences found on intelligence and reasoning tasks. We describe this network as the Parieto-Frontal Integration Theory (P-FIT). The P-FIT model includes, by Brodmann areas (BAs): the dorsolateral prefrontal cortex (BAs 6, 9, 10, 45, 46, 47), the inferior (BAs 39, 40) and superior (BA 7) parietal lobule, the anterior cingulate (BA 32), and regions within the temporal (BAs 21, 37) and occipital (BAs 18, 19) lobes. White matter regions (i.e., arcuate fasciculus) are also implicated. The P-FIT is examined in light of findings from human lesion studies, including missile wounds, frontal lobotomy/leukotomy, temporal lobectomy, and lesions resulting in damage to the language network (e.g., aphasia), as well as findings from imaging research identifying brain regions under significant genetic control. Overall, we conclude that modern neuroimaging techniques are beginning to articulate a biology of intelligence. We propose that the P-FIT provides a parsimonious account for many of the empirical observations, to date, which relate individual differences in intelligence test scores to variations in brain structure and function. Moreover, the model provides a framework for testing new hypotheses in future experimental designs.
“是否存在一种正常人类神经系统所特有的智力生物学基础?”在此,我们回顾了37项现代神经影像学研究,试图回答霍尔斯特德(1947年)提出的这个问题,当时他和上世纪的其他杰出人物致力于理解大脑与行为是如何通过智力和理性的表达联系起来的。通过回顾功能(即功能磁共振成像、正电子发射断层扫描)和结构(即磁共振波谱、扩散张量成像、基于体素的形态测量学)神经影像学范式的研究,我们报告了一个惊人的共识,即一个分布式网络的变化预示着在智力和推理任务中发现的个体差异。我们将这个网络描述为顶叶-额叶整合理论(P-FIT)。P-FIT模型按布罗德曼区(BAs)包括:背外侧前额叶皮层(BAs 6、9、10、45、46、47)、下顶叶(BAs 39、40)和上顶叶小叶(BA 7)、前扣带回(BA 32)以及颞叶(BAs 21、37)和枕叶(BAs 18、19)内的区域。白质区域(即弓状束)也与之相关。我们根据人类损伤研究的结果来检验P-FIT,这些研究包括导弹伤、额叶切除术/白质切断术、颞叶切除术以及导致语言网络受损(如失语症)的损伤,还有来自识别受显著基因控制的脑区的影像学研究结果。总体而言,我们得出结论,现代神经影像学技术正开始阐明智力的生物学基础。我们认为,P-FIT为许多迄今为止将智力测试分数的个体差异与脑结构和功能变化相关联的实证观察结果提供了一个简洁的解释。此外,该模型为未来实验设计中检验新假设提供了一个框架。