Fieuws S, Verbeke Geert, Molenberghs G
Biostatistical Centre, Katholieke Universiteit Leuven, Leuven, Belgium.
Stat Methods Med Res. 2007 Oct;16(5):387-97. doi: 10.1177/0962280206075305. Epub 2007 Jul 26.
Mixed models are widely used for the analysis of one repeatedly measured outcome. If more than one outcome is present, a mixed model can be used for each one. These separate models can be tied together into a multivariate mixed model by specifying a joint distribution for their random effects. This strategy has been used for joining multivariate longitudinal profiles or other types of multivariate repeated data. However, computational problems are likely to occur when the number of outcomes increases. A pairwise modeling approach, in which all possible bivariate mixed models are fitted and where inference follows from pseudo-likelihood arguments, has been proposed to circumvent the dimensional limitations in multivariate mixed models. An analysis on 22-variate longitudinal measurements of hearing thresholds illustrates the performance of the pairwise approach in the context of multivariate linear mixed models. For generalized linear mixed models, a data set containing repeated measurements of seven aspects of psycho-cognitive functioning will be analyzed.
混合模型广泛用于分析单一重复测量的结果。如果存在多个结果,则可为每个结果使用一个混合模型。通过为其随机效应指定联合分布,这些单独的模型可以被绑定到一个多变量混合模型中。这种策略已被用于连接多变量纵向概况或其他类型的多变量重复数据。然而,当结果数量增加时,可能会出现计算问题。为了规避多变量混合模型中的维度限制,已经提出了一种成对建模方法,即拟合所有可能的双变量混合模型,并根据伪似然论证进行推断。一项关于听力阈值的22变量纵向测量的分析说明了成对方法在多变量线性混合模型背景下的性能。对于广义线性混合模型,将分析一个包含心理认知功能七个方面重复测量的数据集。