Faes Christel, Aerts Marc, Molenberghs Geert, Geys Helena, Teuns Greet, Bijnens Luc
Center for Statistics, Hasselt University, Agoralaan, Diepenbeek, Belgium.
Stat Med. 2008 Sep 30;27(22):4408-27. doi: 10.1002/sim.3314.
In repeated dose-toxicity studies, many outcomes are repeatedly measured on the same animal to study the toxicity of a compound of interest. This is only one example in which one is confronted with the analysis of many outcomes, possibly of a different type. Probably the most common situation is that of an amalgamation of continuous and categorical outcomes. A possible approach towards the joint analysis of two longitudinal outcomes of a different nature is the use of random-effects models (Models for Discrete Longitudinal Data. Springer Series in Statistics. Springer: New York, 2005). Although a random-effects model can easily be extended to jointly model many outcomes of a different nature, computational problems arise as the number of outcomes increases. To avoid maximization of the full likelihood expression, Fieuws and Verbeke (Biometrics 2006; 62:424-431) proposed a pairwise modeling strategy in which all possible pairs are modeled separately, using a mixed model, yielding several different estimates for the same parameters. These latter estimates are then combined into a single set of estimates. Also inference, based on pseudo-likelihood principles, is indirectly derived from the separate analyses. In this paper, we extend the approach of Fieuws and Verbeke (Biometrics 2006; 62:424-431) in two ways: the method is applied to different types of outcomes and the full pseudo-likelihood expression is maximized at once, leading directly to unique estimates as well as direct application of pseudo-likelihood inference. This is very appealing when interested in hypothesis testing. The method is applied to data from a repeated dose-toxicity study designed for the evaluation of the neurofunctional effects of a psychotrophic drug. The relative merits of both methods are discussed.
在重复剂量毒性研究中,多次对同一动物测量多个结果,以研究感兴趣化合物的毒性。这只是面临多个可能不同类型结果分析的一个例子。可能最常见的情况是连续型和分类型结果的合并。对两种不同性质的纵向结果进行联合分析的一种可能方法是使用随机效应模型(《离散纵向数据模型》。统计学系列丛书。施普林格出版社:纽约,2005年)。尽管随机效应模型可以很容易地扩展为对多个不同性质的结果进行联合建模,但随着结果数量的增加会出现计算问题。为避免对完整似然表达式进行最大化,菲厄夫斯和韦贝克(《生物统计学》2006年;62:424 - 431)提出了一种成对建模策略,即使用混合模型分别对所有可能的成对结果进行建模,从而对相同参数产生几个不同的估计值。然后将这些估计值合并为一组单一的估计值。同样,基于伪似然原理的推断也是从单独的分析中间接推导出来的。在本文中,我们从两个方面扩展了菲厄夫斯和韦贝克(《生物统计学》2006年;62:424 - 431)的方法:该方法应用于不同类型的结果,并且一次性最大化完整的伪似然表达式,直接得出唯一的估计值以及直接应用伪似然推断。当对假设检验感兴趣时,这非常有吸引力。该方法应用于一项重复剂量毒性研究的数据,该研究旨在评估一种精神药物的神经功能效应。讨论了两种方法的相对优点。