Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
Stat Med. 2024 Nov 30;43(27):5182-5192. doi: 10.1002/sim.10230. Epub 2024 Oct 7.
We consider the problem of combining multiple biomarkers to improve the diagnostic accuracy of detecting a disease when only group-tested data on the disease status are available. There are several challenges in addressing this problem, including unavailable individual disease statuses, differential misclassification depending on group size and number of diseased individuals in the group, and extensive computation due to a large number of possible combinations of multiple biomarkers. To tackle these issues, we propose a pairwise model fitting approach to estimating the distribution of the optimal linear combination of biomarkers and its diagnostic accuracy under the assumption of a multivariate normal distribution. The approach is evaluated in simulation studies and applied to data on chlamydia detection and COVID-19 diagnosis.
我们考虑了在只有群体测试的疾病状态数据可用的情况下,通过组合多个生物标志物来提高疾病检测准确性的问题。在解决这个问题时存在一些挑战,包括个体疾病状态不可用、由于群体大小和群体中患病个体数量不同而导致的差异分类,以及由于多个生物标志物的大量可能组合而导致的大量计算。为了解决这些问题,我们提出了一种基于配对模型拟合的方法,用于在假设多变量正态分布的情况下,估计生物标志物最优线性组合的分布及其诊断准确性。该方法在模拟研究中进行了评估,并应用于衣原体检测和 COVID-19 诊断数据。