Suppr超能文献

细胞膜微电张力的有限元分析

Finite element analysis of microelectrotension of cell membranes.

作者信息

Bae Chilman, Butler Peter J

机构信息

Department of Bioengineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, USA.

出版信息

Biomech Model Mechanobiol. 2008 Oct;7(5):379-86. doi: 10.1007/s10237-007-0093-y. Epub 2007 Jul 27.

Abstract

Electric fields can be focused by micropipette-based electrodes to induce stresses on cell membranes leading to tension and poration. To date, however, these membrane stress distributions have not been quantified. In this study, we determine membrane tension, stress, and strain distributions in the vicinity of a microelectrode using finite element analysis of a multiscale electro-mechanical model of pipette, media, membrane, actin cortex, and cytoplasm. Electric field forces are coupled to membranes using the Maxwell stress tensor and membrane electrocompression theory. Results suggest that micropipette electrodes provide a new non-contact method to deliver physiological stresses directly to membranes in a focused and controlled manner, thus providing the quantitative foundation for micreoelectrotension, a new technique for membrane mechanobiology.

摘要

电场可通过基于微吸管的电极进行聚焦,以在细胞膜上诱导应力,从而导致张力和穿孔。然而,迄今为止,这些膜应力分布尚未得到量化。在本研究中,我们使用微吸管、介质、膜、肌动蛋白皮层和细胞质的多尺度机电模型的有限元分析,确定微电极附近的膜张力、应力和应变分布。电场力通过麦克斯韦应力张量和膜电压缩理论与膜耦合。结果表明,微吸管电极提供了一种新的非接触方法,可将生理应力以聚焦和可控的方式直接传递到膜上,从而为微电张力提供了定量基础,微电张力是一种用于膜力学生物学的新技术。

相似文献

1
Finite element analysis of microelectrotension of cell membranes.
Biomech Model Mechanobiol. 2008 Oct;7(5):379-86. doi: 10.1007/s10237-007-0093-y. Epub 2007 Jul 27.
2
Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension.
Biophys J. 2004 Oct;87(4):2870-84. doi: 10.1529/biophysj.104.040436.
3
Finite element analysis of imposing femtonewton forces with micropipette aspiration.
Ann Biomed Eng. 2002 Apr;30(4):546-54. doi: 10.1114/1.1476017.
4
A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex.
J Neural Eng. 2005 Dec;2(4):103-13. doi: 10.1088/1741-2560/2/4/006. Epub 2005 Oct 11.
5
Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode.
IEEE Trans Biomed Eng. 2003 Apr;50(4):501-9. doi: 10.1109/TBME.2003.809486.
6
Effective conductivity of a suspension of permeabilized cells: a theoretical analysis.
Biophys J. 2003 Aug;85(2):719-29. doi: 10.1016/S0006-3495(03)74515-9.
7
A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading.
Biomech Model Mechanobiol. 2008 Oct;7(5):405-16. doi: 10.1007/s10237-007-0104-z. Epub 2007 Sep 28.
8
Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells.
Ann Biomed Eng. 2007 Feb;35(2):208-23. doi: 10.1007/s10439-006-9223-4. Epub 2006 Dec 12.
9
The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis.
J Mech Behav Biomed Mater. 2023 Aug;144:105967. doi: 10.1016/j.jmbbm.2023.105967. Epub 2023 Jun 8.
10
Effect of pore size on the calculated pressure at biological cells pore wall.
IEEE Trans Nanobioscience. 2006 Sep;5(3):157-63. doi: 10.1109/tnb.2006.880822.

引用本文的文献

1
Multiscale modelling of the extracellular matrix.
Matrix Biol Plus. 2021 Dec 14;13:100096. doi: 10.1016/j.mbplus.2021.100096. eCollection 2022 Feb.
2
Mechanic stress generated by a time-varying electromagnetic field on bone surface.
Med Biol Eng Comput. 2018 Oct;56(10):1793-1805. doi: 10.1007/s11517-018-1814-3. Epub 2018 Mar 19.
3
Vesicle biomechanics in a time-varying magnetic field.
BMC Biophys. 2015 Jan 21;8(1):2. doi: 10.1186/s13628-014-0016-0. eCollection 2015.
4
Contact-free scanning and imaging with the scanning ion conductance microscope.
Anal Chem. 2014 Mar 4;86(5):2353-60. doi: 10.1021/ac402748j. Epub 2014 Feb 12.

本文引用的文献

1
Automated single-cell electroporation.
Biotechniques. 2006 Oct;41(4):399-400, 402. doi: 10.2144/000112261.
2
Electric pulses induce cylindrical deformations on giant vesicles in salt solutions.
Biophys J. 2006 Sep 1;91(5):1778-86. doi: 10.1529/biophysj.106.081620. Epub 2006 Jun 9.
4
Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge.
Biochim Biophys Acta. 2005 Aug 5;1724(3):270-80. doi: 10.1016/j.bbagen.2005.05.006.
5
A single cell electroporation chip.
Lab Chip. 2005 Jan;5(1):38-43. doi: 10.1039/b408352k. Epub 2004 Sep 22.
6
Electro-deformation and poration of giant vesicles viewed with high temporal resolution.
Biophys J. 2005 Feb;88(2):1143-55. doi: 10.1529/biophysj.104.050310. Epub 2004 Dec 13.
8
Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension.
Biophys J. 2004 Oct;87(4):2870-84. doi: 10.1529/biophysj.104.040436.
9
MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE.
Biophys J. 1964 Mar;4(2):115-35. doi: 10.1016/s0006-3495(64)86773-4.
10
Magnetic tweezers: micromanipulation and force measurement at the molecular level.
Biophys J. 2002 Jun;82(6):3314-29. doi: 10.1016/S0006-3495(02)75672-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验