Bae Chilman, Butler Peter J
Department of Bioengineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, USA.
Biomech Model Mechanobiol. 2008 Oct;7(5):379-86. doi: 10.1007/s10237-007-0093-y. Epub 2007 Jul 27.
Electric fields can be focused by micropipette-based electrodes to induce stresses on cell membranes leading to tension and poration. To date, however, these membrane stress distributions have not been quantified. In this study, we determine membrane tension, stress, and strain distributions in the vicinity of a microelectrode using finite element analysis of a multiscale electro-mechanical model of pipette, media, membrane, actin cortex, and cytoplasm. Electric field forces are coupled to membranes using the Maxwell stress tensor and membrane electrocompression theory. Results suggest that micropipette electrodes provide a new non-contact method to deliver physiological stresses directly to membranes in a focused and controlled manner, thus providing the quantitative foundation for micreoelectrotension, a new technique for membrane mechanobiology.
电场可通过基于微吸管的电极进行聚焦,以在细胞膜上诱导应力,从而导致张力和穿孔。然而,迄今为止,这些膜应力分布尚未得到量化。在本研究中,我们使用微吸管、介质、膜、肌动蛋白皮层和细胞质的多尺度机电模型的有限元分析,确定微电极附近的膜张力、应力和应变分布。电场力通过麦克斯韦应力张量和膜电压缩理论与膜耦合。结果表明,微吸管电极提供了一种新的非接触方法,可将生理应力以聚焦和可控的方式直接传递到膜上,从而为微电张力提供了定量基础,微电张力是一种用于膜力学生物学的新技术。