Suppr超能文献

剪切和局部粘附内皮细胞多组分模型的有限元应力分析

Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells.

作者信息

Ferko Michael C, Bhatnagar Amit, Garcia Mariana B, Butler Peter J

机构信息

Department of Bioengineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, USA.

出版信息

Ann Biomed Eng. 2007 Feb;35(2):208-23. doi: 10.1007/s10439-006-9223-4. Epub 2006 Dec 12.

Abstract

Hemodynamic forces applied at the apical surface of vascular endothelial cells may be redistributed to and amplified at remote intracellular organelles and protein complexes where they are transduced to biochemical signals. In this study we sought to quantify the effects of cellular material inhomogeneities and discrete attachment points on intracellular stresses resulting from physiological fluid flow. Steady-state shear- and magnetic bead-induced stress, strain, and displacement distributions were determined from finite-element stress analysis of a cell-specific, multicomponent elastic continuum model developed from multimodal fluorescence images of confluent endothelial cell (EC) monolayers and their nuclei. Focal adhesion locations and areas were determined from quantitative total internal reflection fluorescence microscopy and verified using green fluorescence protein-focal adhesion kinase (GFP-FAK). The model predicts that shear stress induces small heterogeneous deformations of the endothelial cell cytoplasm on the order of <100 nm. However, strain and stress were amplified 10-100-fold over apical values in and around the high-modulus nucleus and near focal adhesions (FAs) and stress distributions depended on flow direction. The presence of a 0.4 microm glycocalyx was predicted to increase intracellular stresses by approximately 2-fold. The model of magnetic bead twisting rheometry also predicted heterogeneous stress, strain, and displacement fields resulting from material heterogeneities and FAs. Thus, large differences in moduli between the nucleus and cytoplasm and the juxtaposition of constrained regions (e.g. FAs) and unattached regions provide two mechanisms of stress amplification in sheared endothelial cells. Such phenomena may play a role in subcellular localization of early mechanotransduction events.

摘要

施加于血管内皮细胞顶端表面的血流动力学力可能会重新分布并在远处的细胞内细胞器和蛋白质复合物处放大,在这些地方它们被转化为生化信号。在本研究中,我们试图量化细胞材料不均匀性和离散附着点对生理流体流动引起的细胞内应力的影响。通过对由汇合内皮细胞(EC)单层及其细胞核的多模态荧光图像建立的细胞特异性多组分弹性连续体模型进行有限元应力分析,确定了稳态剪切力和磁珠诱导的应力、应变和位移分布。通过定量全内反射荧光显微镜确定粘着斑的位置和面积,并使用绿色荧光蛋白-粘着斑激酶(GFP-FAK)进行验证。该模型预测,剪切应力会在内皮细胞细胞质中引起约<100 nm量级的微小不均匀变形。然而,在高模量细胞核内及其周围以及粘着斑(FAs)附近,应变和应力比顶端值放大了10-100倍,且应力分布取决于流动方向。预测存在0.4微米的糖萼会使细胞内应力增加约2倍。磁珠扭转流变学模型也预测了由材料不均匀性和粘着斑引起的不均匀应力、应变和位移场。因此,细胞核与细胞质之间模量的巨大差异以及受限区域(如粘着斑)与非附着区域的并置提供了剪切内皮细胞中应力放大的两种机制。这些现象可能在早期机械转导事件的亚细胞定位中起作用。

相似文献

1
Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells.
Ann Biomed Eng. 2007 Feb;35(2):208-23. doi: 10.1007/s10439-006-9223-4. Epub 2006 Dec 12.
2
Shear-induced force transmission in a multicomponent, multicell model of the endothelium.
J R Soc Interface. 2014 Sep 6;11(98):20140431. doi: 10.1098/rsif.2014.0431.
3
Mechanobiology of the abluminal glycocalyx.
Biorheology. 2019;56(2-3):101-112. doi: 10.3233/BIR-190212.
4
Mapping the dynamics of shear stress-induced structural changes in endothelial cells.
Am J Physiol Cell Physiol. 2007 Nov;293(5):C1616-26. doi: 10.1152/ajpcell.00457.2006. Epub 2007 Sep 13.
5
Theory of the mechanical response of focal adhesions to shear flow.
J Phys Condens Matter. 2010 May 19;22(19):194111. doi: 10.1088/0953-8984/22/19/194111. Epub 2010 Apr 26.
6
Mechanotransduction in endothelial cell migration.
J Cell Biochem. 2005 Dec 15;96(6):1110-26. doi: 10.1002/jcb.20614.
7
Lateral shear forces applied to cells with single elastic micropillars to influence focal adhesion dynamics.
J Phys Condens Matter. 2010 May 19;22(19):194108. doi: 10.1088/0953-8984/22/19/194108. Epub 2010 Apr 26.
9
Cell focal adhesion clustering leads to decreased and homogenized basal strains.
Int J Numer Method Biomed Eng. 2019 Dec;35(12):e3260. doi: 10.1002/cnm.3260. Epub 2019 Oct 10.

引用本文的文献

1
Temporal dynamics of angiogenesis: the emerging role of mechanoregulated pathways.
Biochem Soc Trans. 2025 Aug 29;53(4):909-923. doi: 10.1042/BST20253048.
2
A cell-and-plasma numerical model reveals hemodynamic stress and flow adaptation in zebrafish microvessels after morphological alteration.
PLoS Comput Biol. 2023 Dec 4;19(12):e1011665. doi: 10.1371/journal.pcbi.1011665. eCollection 2023 Dec.
3
Disrupted Stiffness Ratio Alters Nuclear Mechanosensing.
Matter. 2023 Oct 4;6(10):3608-3630. doi: 10.1016/j.matt.2023.08.010. Epub 2023 Sep 1.
4
Mechanotransduction in Endothelial Cells in Vicinity of Cancer Cells.
Cell Mol Bioeng. 2022 Jul 5;15(4):313-330. doi: 10.1007/s12195-022-00728-w. eCollection 2022 Aug.
5
In silico stress fibre content affects peak strain in cytoplasm and nucleus but not in the membrane for uniaxial substrate stretch.
Med Biol Eng Comput. 2021 Sep;59(9):1933-1944. doi: 10.1007/s11517-021-02393-z. Epub 2021 Aug 14.
6
Image-derived modeling of nucleus strain amplification associated with chromatin heterogeneity.
Biophys J. 2021 Apr 20;120(8):1323-1332. doi: 10.1016/j.bpj.2021.01.040. Epub 2021 Mar 4.
7
Mechanobiology of dynamic enzyme systems.
APL Bioeng. 2020 Mar 3;4(1):010907. doi: 10.1063/1.5133645. eCollection 2020 Mar.
8
Good advice for endothelial cells: Get in line, relax tension, and go with the flow.
APL Bioeng. 2020 Feb 26;4(1):010905. doi: 10.1063/1.5129812. eCollection 2020 Mar.
9
measurements of hemodynamic forces and their effects on endothelial cell mechanics at the sub-cellular level.
Biomicrofluidics. 2018 Nov 9;12(6):064101. doi: 10.1063/1.5028122. eCollection 2018 Nov.
10

本文引用的文献

1
High-resolution solid modeling of biological samples imaged with 3D fluorescence microscopy.
Microsc Res Tech. 2006 Aug;69(8):648-55. doi: 10.1002/jemt.20332.
2
Role of caveolin-1 in the regulation of the vascular shear stress response.
J Clin Invest. 2006 May;116(5):1222-5. doi: 10.1172/JCI28509.
3
Mechanotransduction and the glycocalyx.
J Intern Med. 2006 Apr;259(4):339-50. doi: 10.1111/j.1365-2796.2006.01620.x.
5
A mechanosensory complex that mediates the endothelial cell response to fluid shear stress.
Nature. 2005 Sep 15;437(7057):426-31. doi: 10.1038/nature03952.
6
Polarized downregulation of the paxillin-p130CAS-Rac1 pathway induced by shear flow.
J Cell Sci. 2005 Sep 1;118(Pt 17):3997-4007. doi: 10.1242/jcs.02523.
8
Rat airway smooth muscle cell during actin modulation: rheology and glassy dynamics.
Am J Physiol Cell Physiol. 2005 Dec;289(6):C1388-95. doi: 10.1152/ajpcell.00060.2005. Epub 2005 Aug 24.
9
Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle.
J Biomech. 2005 Sep;38(9):1751-9. doi: 10.1016/j.jbiomech.2005.06.003.
10
Cytoskeletal remodelling and slow dynamics in the living cell.
Nat Mater. 2005 Jul;4(7):557-61. doi: 10.1038/nmat1404. Epub 2005 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验