Colmenares Serafin U, Buker Shane M, Buhler Marc, Dlakić Mensur, Moazed Danesh
Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
Mol Cell. 2007 Aug 3;27(3):449-61. doi: 10.1016/j.molcel.2007.07.007. Epub 2007 Jul 19.
The fission yeast centromeric repeats are transcribed and ultimately processed into small interfering RNAs (siRNAs) that are required for heterochromatin formation. siRNA generation requires dsRNA synthesis by the RNA-directed RNA polymerase complex (RDRC) and processing by the Dicer ribonuclease. Here we show that Dcr1, the fission yeast Dicer, is physically associated with RDRC. Dcr1 generates siRNAs in an ATP-dependent manner that requires its conserved N-terminal helicase domain. Furthermore, C-terminal truncations of Dcr1 that abolish its interaction with RDRC, but can generate siRNA in vitro, abolish siRNA generation and heterochromatic gene silencing in vivo. Finally, reconstitution experiments show that the association of Dcr1 with RDRC strongly stimulates the dsRNA synthesis activity of RDRC. Our results suggest that heterochromatic dsRNA synthesis and siRNA generation are physically coupled processes. This coupling has implications for cis-restriction of siRNA-mediated heterochromatin assembly and for mechanisms that give rise to siRNA strand polarity.
裂殖酵母着丝粒重复序列被转录,最终加工成小干扰RNA(siRNA),这是异染色质形成所必需的。siRNA的产生需要RNA指导的RNA聚合酶复合物(RDRC)合成双链RNA(dsRNA),并由Dicer核糖核酸酶进行加工。在此我们表明,裂殖酵母Dicer(Dcr1)与RDRC存在物理关联。Dcr1以ATP依赖的方式产生siRNA,这需要其保守的N端解旋酶结构域。此外,Dcr1的C端截短消除了其与RDRC的相互作用,但仍能在体外产生siRNA,却在体内消除了siRNA的产生和异染色质基因沉默。最后,重组实验表明,Dcr1与RDRC的结合强烈刺激了RDRC的dsRNA合成活性。我们的结果表明,异染色质dsRNA合成和siRNA产生是物理偶联的过程。这种偶联对siRNA介导的异染色质组装的顺式限制以及产生siRNA链极性的机制具有重要意义。