Suppr超能文献

RNA 质量控制因子促使 Clr4/SUV39H 形成并引发组成型异染色质组装。

RNA quality control factors nucleate Clr4/SUV39H and trigger constitutive heterochromatin assembly.

机构信息

Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA.

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Cell. 2024 Jun 20;187(13):3262-3283.e23. doi: 10.1016/j.cell.2024.04.042. Epub 2024 May 29.

Abstract

In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.

摘要

在真核生物中,Suv39 家族的蛋白质将组蛋白 H3 的赖氨酸 9 三甲基化(H3K9me),形成组成型异染色质。然而,Suv39 蛋白如何在异染色质上成核尚未完全描述。在裂殖酵母中,目前的模型假设 Argonaute1 相关的小 RNA(sRNA)将唯一的 H3K9 甲基转移酶 Clr4/SUV39H 核定于着丝粒。在这里,我们表明在没有所有 sRNA 和 H3K9me 的情况下,Mtl1 和 Red1 核心(MTREC)/PAXT 复合物通过不同的机制将 Clr4/SUV39H 核定于一个异染色质长非编码 RNA(lncRNA)上,两个 H3K9 去乙酰化酶 Sir2 和 Clr3 也在此积累。H3K9 去乙酰化和甲基化的反复循环以非 sRNA 依赖的方式将 Clr4/SUV39H 从成核中心扩散,产生基本的 H3K9me 状态。这被 RNAi 机制作用,以增强和放大着丝粒处的 Clr4/H3K9me 信号,从而建立异染色质。总的来说,我们的数据表明 lncRNA 和 RNA 质量控制因子可以核化异染色质,并在真核生物中作为表观遗传沉默因子发挥作用。

相似文献

1
RNA quality control factors nucleate Clr4/SUV39H and trigger constitutive heterochromatin assembly.
Cell. 2024 Jun 20;187(13):3262-3283.e23. doi: 10.1016/j.cell.2024.04.042. Epub 2024 May 29.
2
Automethylation-induced conformational switch in Clr4 (Suv39h) maintains epigenetic stability.
Nature. 2018 Aug;560(7719):504-508. doi: 10.1038/s41586-018-0398-2. Epub 2018 Jul 23.
3
Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast.
EMBO J. 2013 Aug 28;32(17):2321-35. doi: 10.1038/emboj.2013.143. Epub 2013 Jun 14.
4
Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription.
Nature. 2017 Jul 27;547(7664):463-467. doi: 10.1038/nature23267. Epub 2017 Jun 22.
6
Survival in Quiescence Requires the Euchromatic Deployment of Clr4/SUV39H by Argonaute-Associated Small RNAs.
Mol Cell. 2016 Dec 15;64(6):1088-1101. doi: 10.1016/j.molcel.2016.11.020.
10
The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast.
Mol Cell. 2005 Oct 28;20(2):173-85. doi: 10.1016/j.molcel.2005.10.002.

引用本文的文献

2
Fungi as models of centromere innovation: from DNA sequence to 3-dimensional arrangement.
Chromosome Res. 2025 Aug 11;33(1):18. doi: 10.1007/s10577-025-09775-1.
7
Finding new roles of classic biomolecular condensates in the nucleus: Lessons from fission yeast.
Cell Insight. 2024 Aug 5;3(5):100194. doi: 10.1016/j.cellin.2024.100194. eCollection 2024 Oct.
8
Mapping the dynamics of epigenetic adaptation in S. pombe during heterochromatin misregulation.
Dev Cell. 2024 Aug 19;59(16):2222-2238.e4. doi: 10.1016/j.devcel.2024.07.006. Epub 2024 Aug 1.

本文引用的文献

1
Mathematical model for the role of multiple pericentromeric repeats on heterochromatin assembly.
PLoS Comput Biol. 2024 Apr 10;20(4):e1012027. doi: 10.1371/journal.pcbi.1012027. eCollection 2024 Apr.
2
Histone deacetylation primes self-propagation of heterochromatin domains to promote epigenetic inheritance.
Nat Struct Mol Biol. 2022 Sep;29(9):898-909. doi: 10.1038/s41594-022-00830-7. Epub 2022 Sep 5.
3
Structural analysis of Red1 as a conserved scaffold of the RNA-targeting MTREC/PAXT complex.
Nat Commun. 2022 Aug 24;13(1):4969. doi: 10.1038/s41467-022-32542-3.
4
Structural basis for RNA surveillance by the human nuclear exosome targeting (NEXT) complex.
Cell. 2022 Jun 9;185(12):2132-2147.e26. doi: 10.1016/j.cell.2022.04.016.
5
Rixosomal RNA degradation contributes to silencing of Polycomb target genes.
Nature. 2022 Apr;604(7904):167-174. doi: 10.1038/s41586-022-04598-0. Epub 2022 Mar 30.
6
Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression.
Mol Cell. 2022 May 5;82(9):1691-1707.e8. doi: 10.1016/j.molcel.2022.03.004. Epub 2022 Mar 28.
7
H3K9 dimethylation safeguards cancer cells against activation of the interferon pathway.
Sci Adv. 2022 Mar 18;8(11):eabf8627. doi: 10.1126/sciadv.abf8627.
8
TASOR epigenetic repressor cooperates with a CNOT1 RNA degradation pathway to repress HIV.
Nat Commun. 2022 Jan 10;13(1):66. doi: 10.1038/s41467-021-27650-5.
9
A composite DNA element that functions as a maintainer required for epigenetic inheritance of heterochromatin.
Mol Cell. 2021 Oct 7;81(19):3979-3991.e4. doi: 10.1016/j.molcel.2021.07.017. Epub 2021 Aug 9.
10
An enhancer screen identifies new suppressors of small-RNA-mediated epigenetic gene silencing.
PLoS Genet. 2021 Jun 22;17(6):e1009645. doi: 10.1371/journal.pgen.1009645. eCollection 2021 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验