Suppr超能文献

不饱和多孔介质中扩散性甲烷/氧气逆向梯度下的甲烷营养活性。

Methanotrophic activity in a diffusive methane/oxygen counter-gradient in an unsaturated porous medium.

作者信息

Urmann Karina, Norina Elena S, Schroth Martin H, Zeyer Josef

机构信息

Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland.

出版信息

J Contam Hydrol. 2007 Oct 30;94(1-2):126-38. doi: 10.1016/j.jconhyd.2007.05.006. Epub 2007 Jun 12.

Abstract

Microbial methane (CH4) oxidation is a main control on emissions of this important greenhouse gas from ecosystems such as contaminated aquifers or wetlands under aerobic onditions. Due to a lack of suitable model systems, we designed a laboratory column to study this process in diffusional CH4/O2 counter-gradients in unsaturated porous media. Analysis and simulations of the steady-state CH4, CO2 and O2 gas profiles showed that in a 15-cm-deep active zone, CH4 oxidation followed first-order kinetics with respect to CH4 with a high apparent first-order rate constant of approximately 30 h(-1). Total cell counts obtained using DAPI-staining suggested growth of methanotrophic bacteria, resulting in a high capacity for CH4 oxidation. This together with apparent tolerance to anoxic conditions enabled a rapid response of the methanotrophic community to changing substrate availability, which was induced by changes in O2 concentrations at the top of the column. Microbial oxidation was confirmed by a approximately 7 per thousand enrichment in CH4 stable carbon isotope ratios along profiles. Using a fractionation factor of 1.025+/-0.0005 for microbial oxidation estimated from this shift and the fractionation factor for diffusion, simulations of isotope profiles agreed well with measured data confirming large fractionation associated with microbial oxidation. The designed column should be valuable for investigating response of methanotrophic bacteria to environmental parameters in future studies.

摘要

微生物甲烷(CH₄)氧化是对受污染含水层或好氧条件下湿地等生态系统中这种重要温室气体排放的主要控制因素。由于缺乏合适的模型系统,我们设计了一个实验室柱来研究非饱和多孔介质中CH₄/O₂扩散反梯度下的这一过程。对稳态CH₄、CO₂和O₂气体剖面的分析和模拟表明,在一个15厘米深的活跃区域,CH₄氧化相对于CH₄遵循一级动力学,表观一级速率常数约为30 h⁻¹。使用DAPI染色获得的总细胞计数表明甲烷营养细菌生长,从而导致高CH₄氧化能力。这与对缺氧条件的明显耐受性一起,使甲烷营养群落能够对柱顶部O₂浓度变化引起的底物可用性变化做出快速反应。沿剖面CH₄稳定碳同位素比值约7‰的富集证实了微生物氧化。利用由此变化估计的微生物氧化分馏系数1.025±0.0005和扩散分馏系数,同位素剖面模拟与实测数据吻合良好,证实了与微生物氧化相关的大分馏。在未来的研究中,设计的柱对于研究甲烷营养细菌对环境参数的响应应该是有价值的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验