Roman Gregory T, Kennedy Robert T
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
J Chromatogr A. 2007 Oct 19;1168(1-2):170-88; discussion 169. doi: 10.1016/j.chroma.2007.06.010. Epub 2007 Jun 12.
Over the past decade a tremendous amount of research has been performed using microfluidic analytical devices to detect over 200 different chemical species. Most of this work has involved substantial integration of fluid manipulation components such as separation channels, valves, and filters. This level of integration has enabled complex sample processing on miniscule sample volumes. Such devices have also demonstrated high throughput, sensitivity, and separation performance. Although the miniaturization of fluidics has been highly valuable, these devices typically rely on conventional ancillary equipment such as power supplies, detection systems, and pumps for operation. This auxiliary equipment prevents the full realization of a "lab-on-a-chip" device with complete portability, autonomous operation, and low cost. Integration and/or miniaturization of ancillary components would dramatically increase the capability and impact of microfluidic separations systems. This review describes recent efforts to incorporate auxiliary equipment either as miniaturized plug-in modules or directly fabricated into the microfluidic device.
在过去十年中,人们利用微流控分析设备进行了大量研究,以检测200多种不同的化学物质。这项工作大多涉及流体操控组件(如分离通道、阀门和过滤器)的大量集成。这种集成水平使得能够在极小的样本体积上进行复杂的样本处理。此类设备还展现出了高通量、高灵敏度和分离性能。尽管流体系统的小型化具有很高的价值,但这些设备通常依赖于传统的辅助设备(如电源、检测系统和泵)来运行。这种辅助设备阻碍了具有完全便携性、自主运行能力和低成本的“芯片实验室”设备的全面实现。辅助组件的集成和/或小型化将极大地提升微流控分离系统的能力和影响力。本综述描述了近期将辅助设备作为小型化插件模块或直接制造到微流控设备中的相关努力。