Suppr超能文献

具有数量级强度和速度优势的局部平面梯度。

Local planar gradients with order-of-magnitude strength and speed advantage.

作者信息

Aksel Bulent, Marinelli Luca, Collick Bruce D, Von Morze Cornelius, Bottomley Paul A, Hardy Christopher J

机构信息

GE Global Research, Niskayuna, New York, USA.

GE Healthcare, Waukesha, Wisconsin, USA.

出版信息

Magn Reson Med. 2007 Jul;58(1):134-143. doi: 10.1002/mrm.21263.

Abstract

A three-axis uniplanar gradient coil was designed and built to provide order-of-magnitude increases in gradient strength of up to 500 mT/m on the x- and y-axes, and 1000 mT/m for the z-axis at 640 A input over a limited FOV ( approximately 16 cm) for superficial regions, compared to conventional gradient coils, with significant gradient strengths extending deeper into the body. The gradient set is practically accommodated in the bore of a conventional whole-body, cylindrical-geometry MRI scanner, and operated using standard gradient supplies. The design was optimized for gradient linearity over a restricted volume while accounting for the practical problems of torque and heating. Tests at 320 A demonstrated up to 420-mT/m gradients near the surface at efficiencies of up to 1.4 mT/m/A. A new true 2D gradient-nonlinearity correction algorithm was developed to rectify gradient nonlinearities and considerably expand the imageable volumes. The gradient system and correction algorithm were implemented in a standard 1.5 T scanner and demonstrated by high-resolution imaging of phantoms and humans.

摘要

设计并制造了一种三轴单平面梯度线圈,与传统梯度线圈相比,在有限视野(约16厘米)内,对于浅表区域,在640 A输入电流时,x轴和y轴上的梯度强度提高了一个数量级,可达500 mT/m,z轴上可达1000 mT/m,且显著的梯度强度能延伸到身体更深部位。该梯度线圈组实际上可安装在传统全身圆柱形几何结构的MRI扫描仪的孔腔内,并使用标准梯度电源进行操作。在考虑扭矩和发热等实际问题的同时,针对受限体积内的梯度线性度对设计进行了优化。在320 A电流下进行的测试表明,表面附近的梯度可达420 mT/m,效率高达1.4 mT/m/A。开发了一种新的真正的二维梯度非线性校正算法,以校正梯度非线性并显著扩大可成像体积。梯度系统和校正算法在一台标准1.5 T扫描仪中实现,并通过对体模和人体的高分辨率成像进行了演示。

相似文献

1
Local planar gradients with order-of-magnitude strength and speed advantage.
Magn Reson Med. 2007 Jul;58(1):134-143. doi: 10.1002/mrm.21263.
2
A cradle-shaped gradient coil to expand the clear-bore width of an animal MRI scanner.
Phys Med Biol. 2010 Jan 21;55(2):497-514. doi: 10.1088/0031-9155/55/2/011. Epub 2009 Dec 21.
3
Elliptical Halbach magnet and gradient modules for low-field portable magnetic resonance imaging.
NMR Biomed. 2024 Dec;37(12):e5258. doi: 10.1002/nbm.5258. Epub 2024 Sep 30.
4
Design of biplanar gradient coils for magnetic resonance imaging of the human torso and limbs.
Magn Reson Imaging. 1999 Jun;17(5):739-54. doi: 10.1016/s0730-725x(99)00012-0.
5
Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging.
Magn Reson Med. 2020 Jan;83(1):352-366. doi: 10.1002/mrm.27909. Epub 2019 Aug 6.
7
A uniplanar three-axis gradient set for in vivo magnetic resonance microscopy.
J Magn Reson. 2009 Sep;200(1):38-48. doi: 10.1016/j.jmr.2009.05.014. Epub 2009 Jun 2.
8
Experimental evaluation of nonlinearities of small-sized insertable gradient coils.
Magn Reson Imaging. 1998 Dec;16(10):1257-63. doi: 10.1016/s0730-725x(98)00124-6.
10
A cone-shaped gradient coil design for high-resolution MRI head imaging.
Phys Med Biol. 2019 Apr 5;64(8):085003. doi: 10.1088/1361-6560/ab084a.

引用本文的文献

1
Generalized magnetostatic target field method for shielded magnetic field coils in a separable coordinate system.
J Appl Phys. 2023 May 7;133(17):174504. doi: 10.1063/5.0151057. Epub 2023 May 2.
2
A silent gradient axis for soundless spatial encoding to enable fast and quiet brain imaging.
Magn Reson Med. 2022 Feb;87(2):1062-1073. doi: 10.1002/mrm.29010. Epub 2021 Sep 21.
3
Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI.
MAGMA. 2016 Aug;29(4):691-8. doi: 10.1007/s10334-016-0525-8. Epub 2016 Feb 9.
5
Monoplanar gradient system for imaging with nonlinear gradients.
MAGMA. 2015 Oct;28(5):447-57. doi: 10.1007/s10334-015-0481-8. Epub 2015 Feb 17.
6
Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy.
Neuroimage. 2014 Dec;103:10-19. doi: 10.1016/j.neuroimage.2014.09.006. Epub 2014 Sep 16.
7
Characterizing tumor response to chemotherapy at various length scales using temporal diffusion spectroscopy.
PLoS One. 2012;7(7):e41714. doi: 10.1371/journal.pone.0041714. Epub 2012 Jul 24.
9
Superelliptical insert gradient coil with a field-modifying layer for breast imaging.
Magn Reson Med. 2011 Mar;65(3):863-72. doi: 10.1002/mrm.22639. Epub 2010 Oct 11.
10
Magnetic Resonance Imaging with Composite (Dual) Gradients.
Concepts Magn Reson Part B Magn Reson Eng. 2009 Apr 1;35(2):89-97. doi: 10.1002/cmr.b.20134.

本文引用的文献

2
Fast magnetic resonance imaging of the heart.
Eur J Radiol. 1999 Feb;29(2):101-13. doi: 10.1016/s0720-048x(98)00173-9.
3
MRI geometric distortion: a simple approach to correcting the effects of non-linear gradient fields.
J Magn Reson Imaging. 1999 Jun;9(6):821-31. doi: 10.1002/(sici)1522-2586(199906)9:6<821::aid-jmri9>3.0.co;2-2.
4
Design of biplanar gradient coils for magnetic resonance imaging of the human torso and limbs.
Magn Reson Imaging. 1999 Jun;17(5):739-54. doi: 10.1016/s0730-725x(99)00012-0.
5
Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging.
Ann Neurol. 1999 Feb;45(2):265-9. doi: 10.1002/1531-8249(199902)45:2<265::aid-ana21>3.0.co;2-3.
6
Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging.
Circulation. 1998 Dec 15;98(24):2666-71. doi: 10.1161/01.cir.98.24.2666.
9
Gradient coil design: a review of methods.
Magn Reson Imaging. 1993;11(7):903-20. doi: 10.1016/0730-725x(93)90209-v.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验