Suppr超能文献

用于神经成像的高幅度和上升速率磁场梯度线圈的外周神经刺激限制。

Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging.

机构信息

GE Research, Niskayuna, New York.

Uniformed Services University of the Health Sciences, Bethesda, Maryland.

出版信息

Magn Reson Med. 2020 Jan;83(1):352-366. doi: 10.1002/mrm.27909. Epub 2019 Aug 6.

Abstract

PURPOSE

To establish peripheral nerve stimulation (PNS) thresholds for an ultra-high performance magnetic field gradient subsystem (simultaneous 200-mT/m gradient amplitude and 500-T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42-cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks.

METHODS

The MAGNUS head gradient was installed in a whole-body 3T scanner with a custom 16-rung bird-cage transmit/receive RF coil compatible with phased-array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2-4 cm in the superior-inferior and anterior-posterior directions.

RESULTS

The x-axis (left-right) yielded mostly facial stimulation, with mean ΔG = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z-axis (superior-inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y-axis (anterior-posterior) stimulation was negligible. X-axis and z-axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x-axis and z-axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise-to-diffusion contrast as compared with whole-body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate).

CONCLUSION

The PNS threshold of MAGNUS is significantly higher than that for whole-body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.

摘要

目的

为了建立一个超高性能磁场梯度子系统(同时具有 200mT/m 的梯度幅度和 500T/m/s 的梯度爬升率;每个轴 1MVA[MAGNUS])的外周神经刺激(PNS)阈值,该子系统专为具有非对称横向梯度和 42cm 内径的神经成像设计,并确定 PNS 阈值对性别、年龄、患者在梯度子系统内的位置以及解剖学标志的依赖性。

方法

将 MAGNUS 头部梯度安装在具有定制的 16 匝鸟笼发射/接收 RF 线圈的全身 3T 扫描仪中,该线圈与相控阵接收器脑线圈兼容。20 名成年受试者(10 名男性,平均年龄±标准差=40.4±11.1 岁)接受了成像和 PNS 研究。通过在上下和前后方向上移动 2-4cm 来重复测试。

结果

x 轴(左右)主要产生面部刺激,平均ΔG=111±6mT/m,驰豫时间=766±76µsec。z 轴(上下)主要产生胸部/肩部刺激(123±7mT/m,620±62µsec)。y 轴(前后)刺激可忽略不计。x 轴和 z 轴阈值随着年龄的增长而趋于增加,并且与性别几乎没有依赖性。向下和向后的平移倾向于分别增加 x 轴和 z 轴的阈值。电场模拟与 PNS 结果吻合良好。与全身性能(80mT/m 梯度幅度,200T/m/sec 梯度爬升率)相比,在 MAGNUS 梯度性能下进行 PNS 阈值增加的成像可将噪声与扩散对比度降低 35%。

结论

MAGNUS 的 PNS 阈值明显高于全身梯度,这允许使用上升时间较短(低于 1msec)的扩散梯度,这对于研究大脑微观结构长度尺度非常重要。

相似文献

1
Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging.
Magn Reson Med. 2020 Jan;83(1):352-366. doi: 10.1002/mrm.27909. Epub 2019 Aug 6.
4
Peripheral nerve stimulation informed design of a high-performance asymmetric head gradient coil.
Magn Reson Med. 2023 Aug;90(2):784-801. doi: 10.1002/mrm.29668. Epub 2023 Apr 13.
6
Experimental validation of a PNS-optimized whole-body gradient coil.
Magn Reson Med. 2024 Oct;92(4):1788-1803. doi: 10.1002/mrm.30157. Epub 2024 May 20.
7
Minimizing electric fields and increasing peripheral nerve stimulation thresholds using a body gradient array coil.
Magn Reson Med. 2024 Sep;92(3):1290-1305. doi: 10.1002/mrm.30109. Epub 2024 Apr 16.
9
Lightweight, compact, and high-performance 3T MR system for imaging the brain and extremities.
Magn Reson Med. 2018 Nov;80(5):2232-2245. doi: 10.1002/mrm.27175. Epub 2018 Mar 13.

引用本文的文献

1
7T MRI in the evaluation of ischemic stroke: a systematic review.
Front Neurosci. 2025 Jun 23;19:1539617. doi: 10.3389/fnins.2025.1539617. eCollection 2025.
2
Feasibility of strong diffusion encoding and fast readout using a plug-and-play head gradient insert at 7 T.
Magn Reson Med. 2025 Nov;94(5):2304-2316. doi: 10.1002/mrm.30613. Epub 2025 Jul 1.
3
Reassessment of peripheral nerve stimulation thresholds for the Impulse model-optimized asymmetric head gradient coil.
Magn Reson Med. 2025 Sep;94(3):1326-1338. doi: 10.1002/mrm.30523. Epub 2025 May 23.
4
Engineering clinical translation of OGSE diffusion MRI.
Magn Reson Med. 2025 Sep;94(3):913-936. doi: 10.1002/mrm.30510. Epub 2025 May 7.
5
Simultaneous coherent-incoherent motion imaging in brain parenchyma.
Interface Focus. 2025 Apr 4;15(1):20240041. doi: 10.1098/rsfs.2024.0041.
7
Initial assessment of PNS safety for interventionalists during image-guided procedures.
MAGMA. 2025 Apr;38(2):239-251. doi: 10.1007/s10334-025-01228-4. Epub 2025 Feb 11.
8
Influence of peripheral axon geometry and local anatomy on magnetostimulation chronaxie.
J Neural Eng. 2024 Jun 11;21(3). doi: 10.1088/1741-2552/ad510a.
9
Experimental validation of a PNS-optimized whole-body gradient coil.
Magn Reson Med. 2024 Oct;92(4):1788-1803. doi: 10.1002/mrm.30157. Epub 2024 May 20.
10
Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla.
Nat Methods. 2023 Dec;20(12):2048-2057. doi: 10.1038/s41592-023-02068-7. Epub 2023 Nov 27.

本文引用的文献

1
Improving apparent diffusion coefficient accuracy on a compact 3T MRI scanner using gradient nonlinearity correction.
J Magn Reson Imaging. 2018 Dec;48(6):1498-1507. doi: 10.1002/jmri.26201. Epub 2018 Sep 26.
3
Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI.
Neuroimage. 2018 Nov 15;182:8-38. doi: 10.1016/j.neuroimage.2018.05.047. Epub 2018 May 22.
4
Lightweight, compact, and high-performance 3T MR system for imaging the brain and extremities.
Magn Reson Med. 2018 Nov;80(5):2232-2245. doi: 10.1002/mrm.27175. Epub 2018 Mar 13.
5
Double diffusion encoding MRI for the clinic.
Magn Reson Med. 2018 Aug;80(2):507-520. doi: 10.1002/mrm.27043. Epub 2017 Dec 19.
6
A high-performance gradient insert for rapid and short-T imaging at full duty cycle.
Magn Reson Med. 2018 Jun;79(6):3256-3266. doi: 10.1002/mrm.26954. Epub 2017 Oct 5.
8
Gradient heating of bulk metallic implants can be a safety concern in MRI.
Magn Reson Med. 2017 May;77(5):1739-1740. doi: 10.1002/mrm.26652. Epub 2017 Mar 1.
9
Model-based denoising in diffusion-weighted imaging using generalized spherical deconvolution.
Magn Reson Med. 2017 Dec;78(6):2428-2438. doi: 10.1002/mrm.26626. Epub 2017 Feb 28.
10
Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system.
Phys Med Biol. 2017 Jan 21;62(2):N18-N31. doi: 10.1088/1361-6560/aa524f. Epub 2016 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验