GE Research, Niskayuna, New York.
Uniformed Services University of the Health Sciences, Bethesda, Maryland.
Magn Reson Med. 2020 Jan;83(1):352-366. doi: 10.1002/mrm.27909. Epub 2019 Aug 6.
To establish peripheral nerve stimulation (PNS) thresholds for an ultra-high performance magnetic field gradient subsystem (simultaneous 200-mT/m gradient amplitude and 500-T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42-cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks.
The MAGNUS head gradient was installed in a whole-body 3T scanner with a custom 16-rung bird-cage transmit/receive RF coil compatible with phased-array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2-4 cm in the superior-inferior and anterior-posterior directions.
The x-axis (left-right) yielded mostly facial stimulation, with mean ΔG = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z-axis (superior-inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y-axis (anterior-posterior) stimulation was negligible. X-axis and z-axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x-axis and z-axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise-to-diffusion contrast as compared with whole-body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate).
The PNS threshold of MAGNUS is significantly higher than that for whole-body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.
为了建立一个超高性能磁场梯度子系统(同时具有 200mT/m 的梯度幅度和 500T/m/s 的梯度爬升率;每个轴 1MVA[MAGNUS])的外周神经刺激(PNS)阈值,该子系统专为具有非对称横向梯度和 42cm 内径的神经成像设计,并确定 PNS 阈值对性别、年龄、患者在梯度子系统内的位置以及解剖学标志的依赖性。
将 MAGNUS 头部梯度安装在具有定制的 16 匝鸟笼发射/接收 RF 线圈的全身 3T 扫描仪中,该线圈与相控阵接收器脑线圈兼容。20 名成年受试者(10 名男性,平均年龄±标准差=40.4±11.1 岁)接受了成像和 PNS 研究。通过在上下和前后方向上移动 2-4cm 来重复测试。
x 轴(左右)主要产生面部刺激,平均ΔG=111±6mT/m,驰豫时间=766±76µsec。z 轴(上下)主要产生胸部/肩部刺激(123±7mT/m,620±62µsec)。y 轴(前后)刺激可忽略不计。x 轴和 z 轴阈值随着年龄的增长而趋于增加,并且与性别几乎没有依赖性。向下和向后的平移倾向于分别增加 x 轴和 z 轴的阈值。电场模拟与 PNS 结果吻合良好。与全身性能(80mT/m 梯度幅度,200T/m/sec 梯度爬升率)相比,在 MAGNUS 梯度性能下进行 PNS 阈值增加的成像可将噪声与扩散对比度降低 35%。
MAGNUS 的 PNS 阈值明显高于全身梯度,这允许使用上升时间较短(低于 1msec)的扩散梯度,这对于研究大脑微观结构长度尺度非常重要。