Suppr超能文献

一种混合式电子顺磁共振/核磁共振联合成像系统的研发。

Development of a hybrid EPR/NMR coimaging system.

作者信息

Samouilov Alexandre, Caia George L, Kesselring Eric, Petryakov Sergey, Wasowicz Tomasz, Zweier Jay L

机构信息

Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, USA.

出版信息

Magn Reson Med. 2007 Jul;58(1):156-166. doi: 10.1002/mrm.21205.

Abstract

Electron paramagnetic resonance imaging (EPRI) is a powerful technique that enables spatial mapping of free radicals or other paramagnetic compounds; however, it does not in itself provide anatomic visualization of the body. Proton magnetic resonance imaging (MRI) is well suited to provide anatomical visualization. A hybrid EPR/NMR coimaging instrument was constructed that utilizes the complementary capabilities of both techniques, superimposing EPR and proton-MR images to provide the distribution of paramagnetic species in the body. A common magnet and field gradient system is utilized along with a dual EPR and proton-NMR resonator assembly, enabling coimaging without the need to move the sample. EPRI is performed at approximately 1.2 GHz/ approximately 40 mT and proton MRI is performed at 16.18 MHz/ approximately 380 mT; hence the method is suitable for whole-body coimaging of living mice. The gradient system used is calibrated and controlled in such a manner that the spatial geometry of the two acquired images is matched, enabling their superposition without additional postprocessing or marker registration. The performance of the system was tested in a series of phantoms and in vivo applications by mapping the location of a paramagnetic probe in the gastrointestinal (GI) tract of mice. This hybrid EPR/NMR coimaging instrument enables imaging of paramagnetic molecules along with their anatomic localization in the body.

摘要

电子顺磁共振成像(EPRI)是一种强大的技术,能够对自由基或其他顺磁性化合物进行空间映射;然而,它本身并不能提供人体的解剖可视化。质子磁共振成像(MRI)非常适合提供解剖可视化。构建了一种混合EPR/NMR共成像仪器,该仪器利用了两种技术的互补能力,将EPR和质子-MR图像叠加,以提供体内顺磁性物质的分布。使用了一个共同的磁体和场梯度系统以及一个双EPR和质子-NMR谐振器组件,无需移动样品即可进行共成像。EPRI在约1.2 GHz/约40 mT下进行,质子MRI在16.18 MHz/约380 mT下进行;因此该方法适用于活体小鼠的全身共成像。所使用的梯度系统经过校准和控制,使得获取的两幅图像的空间几何形状相匹配,无需额外的后处理或标记配准即可实现它们的叠加。通过绘制顺磁性探针在小鼠胃肠道(GI)中的位置,在一系列体模和体内应用中测试了该系统的性能。这种混合EPR/NMR共成像仪器能够对顺磁性分子进行成像,并确定它们在体内的解剖定位。

相似文献

1
Development of a hybrid EPR/NMR coimaging system.
Magn Reson Med. 2007 Jul;58(1):156-166. doi: 10.1002/mrm.21205.
2
In vivo multisite oximetry using EPR-NMR coimaging.
J Magn Reson. 2010 Nov;207(1):69-77. doi: 10.1016/j.jmr.2010.08.011. Epub 2010 Aug 24.
3
EPR/NMR co-imaging for anatomic registration of free-radical images.
Magn Reson Med. 2002 Mar;47(3):571-8. doi: 10.1002/mrm.10077.
7
Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging.
J Magn Reson. 2012 Mar;216:21-7. doi: 10.1016/j.jmr.2011.10.017. Epub 2011 Nov 7.
8
New experimental apparatus for multimodal resonance imaging: initial EPRI and NMRI experimental results.
Phys Med Biol. 2001 Apr;46(4):1003-16. doi: 10.1088/0031-9155/46/4/307.
9
In vivo imaging of free radicals: applications from mouse to man.
Mol Cell Biochem. 2002 May-Jun;234-235(1-2):359-67.
10
Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging.
J Magn Reson. 2007 Jan;184(1):29-38. doi: 10.1016/j.jmr.2006.09.014. Epub 2006 Oct 6.

引用本文的文献

1
Synthesis and characterization of a Cu(ii) coordination-containing TAM radical as a nitroxyl probe.
RSC Adv. 2022 May 27;12(25):15980-15985. doi: 10.1039/d1ra07511j. eCollection 2022 May 23.
2
Nitroxyl Radical as a Theranostic Contrast Agent in Magnetic Resonance Redox Imaging.
Antioxid Redox Signal. 2022 Jan;36(1-3):95-121. doi: 10.1089/ars.2021.0110. Epub 2021 Jul 28.
3
Development of an L-band resonator optimized for fast scan EPR imaging of the mouse head.
Magn Reson Med. 2021 Oct;86(4):2316-2327. doi: 10.1002/mrm.28821. Epub 2021 May 3.
4
Merging Preclinical EPR Tomography with other Imaging Techniques.
Cell Biochem Biophys. 2019 Sep;77(3):187-196. doi: 10.1007/s12013-019-00880-7. Epub 2019 Aug 22.
5
Development of a fast-scan EPR imaging system for highly accelerated free radical imaging.
Magn Reson Med. 2019 Aug;82(2):842-853. doi: 10.1002/mrm.27759. Epub 2019 Apr 25.
6
Resonators for In Vivo Imaging: Practical Experience.
Appl Magn Reson. 2017 Dec;48(11-12):1227-1247. doi: 10.1007/s00723-017-0947-0. Epub 2017 Sep 22.
7
Imaging Reactive Oxygen Species-Induced Modifications in Living Systems.
Antioxid Redox Signal. 2016 Jun 1;24(16):939-58. doi: 10.1089/ars.2015.6415.
9
The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities.
Antioxid Redox Signal. 2014 Oct 1;21(10):1516-54. doi: 10.1089/ars.2013.5378. Epub 2014 May 9.
10
Uniform spinning sampling gradient electron paramagnetic resonance imaging.
Magn Reson Med. 2014 Feb;71(2):893-900. doi: 10.1002/mrm.24712.

本文引用的文献

5
Field-cycled PEDRI imaging of free radicals with detection at 450 mT.
Magn Reson Imaging. 2005 Feb;23(2):175-81. doi: 10.1016/j.mri.2004.11.051.
6
Cardiac applications of EPR imaging.
NMR Biomed. 2004 Aug;17(5):226-39. doi: 10.1002/nbm.912.
7
Mapping of the B1 field distribution of a surface coil resonator using EPR imaging.
Magn Reson Med. 2002 Dec;48(6):1057-62. doi: 10.1002/mrm.10302.
8
General synthesis of persistent trityl radicals for EPR imaging of biological systems.
J Org Chem. 2002 Jul 12;67(14):4635-9. doi: 10.1021/jo011068f.
9
EPR/NMR co-imaging for anatomic registration of free-radical images.
Magn Reson Med. 2002 Mar;47(3):571-8. doi: 10.1002/mrm.10077.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验