Suppr超能文献

与医疗保健相关的尿路感染的相关因素。

Factors associated with health care-acquired urinary tract infection.

作者信息

Graves Nicholas, Tong Edward, Morton Anthony P, Halton Kate, Curtis Merrilyn, Lairson David, Whitby Michael

机构信息

The Centre for Healthcare Related Infection Surveillance & Prevention, Princess Alexandra Hospital, Brisbane, QLD, Australia.

出版信息

Am J Infect Control. 2007 Aug;35(6):387-92. doi: 10.1016/j.ajic.2006.09.006.

Abstract

BACKGROUND

Health care-acquired urinary tract infection is common, and the risk factors should be understood by those who manage hospitalized patients and researchers interested in interventions and programs designed to reduce rates.

METHODS

We used multivariable logistic regression to identify factors that demonstrated a statistical association with infection.

RESULTS

The incidence rate for infection was 1.66%, and risks increased for patients with prolonged length of stay (odd ratio [OR], 5.28; 95% confidence interval [CI]: 2.46-11.34), urinary catheter (OR, 5.16; 95% CI: 2.84-9.36), unresolved spinal injury (OR, 4.07; 95% CI: 1.04-15.92), transfer to/from another hospital (OR, 2.9; 95% CI: 1.39-6.04), some assistance for daily living prior to admission (OR, 2.58; 95% CI: 1.51-4.41), underlying neurologic disease (OR, 2.59; 95% CI: 1.49-4.49), previous stroke (OR, 1.94; 95% CI: 1.03-3.67), and fracture or dislocation on admission (OR, 3.34; 95% CI: 1.75-6.38). Male sex was protective (OR, 0.44; 95% CI: 0.26-0.77).

CONCLUSION

Our data describe a general hospital population and therefore have relevance to many hospital-based health care professionals. The statistical model is a good fit to the data and has good predictive power. We identify high-risk groups and confirm the need for good decision making for managing the risks of health care-acquired urinary tract infection. This requires information on the effectiveness of risk-reducing strategies and the changes to economic costs and health benefits that result and the synthesis of these data in appropriately designed economic models.

摘要

背景

医疗保健相关的尿路感染很常见,管理住院患者的人员以及对旨在降低感染率的干预措施和项目感兴趣的研究人员应了解其风险因素。

方法

我们使用多变量逻辑回归来确定与感染有统计学关联的因素。

结果

感染发生率为1.66%,住院时间延长的患者感染风险增加(比值比[OR],5.28;95%置信区间[CI]:2.46 - 11.34),使用导尿管的患者(OR,5.16;95% CI:2.84 - 9.36),未解决的脊柱损伤患者(OR,4.07;95% CI:1.04 - 15.92),转至/转出另一家医院的患者(OR,2.9;95% CI:1.39 - 6.04),入院前需要一些日常生活协助的患者(OR,2.58;95% CI:1.51 - 4.41),潜在神经系统疾病患者(OR,2.59;95% CI:1.49 - 4.49),既往中风患者(OR,1.94;95% CI:1.03 - 3.67),以及入院时骨折或脱位的患者(OR,3.34;95% CI:1.75 - 6.38)。男性具有保护作用(OR,0.44;95% CI:0.26 - 0.77)。

结论

我们的数据描述了一个综合医院的人群,因此与许多医院的医疗保健专业人员相关。统计模型与数据拟合良好且具有良好的预测能力。我们确定了高危人群,并确认需要做出明智决策以管理医疗保健相关尿路感染的风险。这需要有关降低风险策略有效性的信息,以及由此导致的经济成本和健康效益的变化,并将这些数据整合到适当设计的经济模型中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验