Donnio Bertrand, Buathong Saïwan, Bury Izabela, Guillon Daniel
Institut de Physique et Chimie des Matériaux de Strasbourg, Groupe des Matériaux Organiques, UMR 7504--CNRS/Université Louis Pasteur, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France.
Chem Soc Rev. 2007 Sep;36(9):1495-513. doi: 10.1039/b605531c. Epub 2007 May 8.
In recent years, there has been an increasing interest in the field of liquid crystalline dendrimers. Such a fast development is, among other things, driven by the multiple possibilities offered by combining the mesomorphic properties of single mesogenic subunits with the supermolecular and versatile architectures of dendrimers to yield a new class of highly functional materials. The induction and the control of the mesomorphic properties (phase type and stability) in dendrimers can be achieved by a dedicated molecular design which depends on the chemical nature and structure of both the functional groups and the dendritic matrix. In particular, the intrinsic connectivity of the dendrimer such as the multivalency of the focal core and the multiplicity of the branches, both controlling the geometrical rate of growth, or the dendritic generation, plays a crucial role and influences at various stages the subtle relationships between the supermolecular structure and the mesophase structure and stability. In this critical review article, an account of the various types of dendritic systems that form liquid-crystalline mesophases along with a description of the self-organization of representative case-study supermolecules into liquid crystalline mesophases will be discussed. Some basics of thermotropic liquid crystals and dendrimers will be given in the introduction. Then, in the following sections, selected examples including side-chain, main-chain, fullerodendrimers, shape-persistent dendrimers, supramolecular dendromesogens and metallodendrimers, as representative families of LC dendrimers, will be described. In the conclusion some further developments will be highlighted. This review will not cover liquid crystalline hyperbranched and dendronized polymers that might be considered as being somehow less structurally "perfect".
近年来,液晶树枝状大分子领域受到越来越多的关注。这种快速发展的推动因素包括,将单个介晶亚基的介晶性质与树枝状大分子的超分子和多功能结构相结合,从而产生一类新型的高功能材料,这带来了多种可能性。树枝状大分子中介晶性质(相类型和稳定性)的诱导和控制可以通过专门的分子设计来实现,该设计取决于官能团和树枝状基体的化学性质和结构。特别是,树枝状大分子的内在连接性,如核心的多价性和分支的多重性,两者都控制着几何生长速率或树枝状代数,起着至关重要的作用,并在各个阶段影响超分子结构与中间相结构及稳定性之间的微妙关系。在这篇批判性综述文章中,将讨论形成液晶中间相的各种树枝状体系类型,以及代表性案例研究超分子自组装成液晶中间相的描述。引言部分将介绍热致液晶和树枝状大分子的一些基础知识。然后,在接下来的章节中,将描述包括侧链型、主链型、富勒烯树枝状大分子、形状持久树枝状大分子、超分子树枝状介晶和金属树枝状大分子等选定的例子,作为液晶树枝状大分子的代表性家族。在结论部分将强调一些进一步的发展。本综述将不涉及可能在结构上被认为不那么“完美”的液晶超支化聚合物和树枝状化聚合物。