Suppr超能文献

rapA基因在控制大肠杆菌生物膜抗生素抗性中的作用。

Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms.

作者信息

Lynch S V, Dixon L, Benoit M R, Brodie E L, Keyhan M, Hu P, Ackerley D F, Andersen G L, Matin A

机构信息

Department of Microbiology and Immunology, Sherman Fairchild Science Building, Stanford University School of Medicine, Stanford, CA 94305-5124, USA.

出版信息

Antimicrob Agents Chemother. 2007 Oct;51(10):3650-8. doi: 10.1128/AAC.00601-07. Epub 2007 Jul 30.

Abstract

By using a high-throughput screening method, a mutant of a uropathogenic Escherichia coli strain affected in the rapA gene was isolated. The mutant formed normal-architecture biofilms but showed decreased penicillin G resistance, although the mutation did not affect planktonic cell resistance. Transcriptome analysis showed that 22 genes were down-regulated in the mutant biofilm. One of these genes was yhcQ, which encodes a putative multidrug resistance pump. Mutants with mutations in this gene also formed biofilms with decreased resistance, although the effect was less pronounced than that of the rapA mutation. Thus, an additional mechanism(s) controlled by a rapA-regulated gene(s) was involved in wild-type biofilm resistance. The search for this mechanism was guided by the fact that another down-regulated gene in rapA biofilms, yeeZ, is suspected to be involved in extra cell wall-related functions. A comparison of the biofilm matrix of the wild-type and rapA strains revealed decreased polysaccharide quantities and coverage in the mutant biofilms. Furthermore, the (fluorescent) functional penicillin G homologue Bocillin FL penetrated the mutant biofilms more readily. The results strongly suggest a dual mechanism for the wild-type biofilm penicillin G resistance, retarded penetration, and effective efflux. The results of studies with an E. coli K-12 strain pointed to the same conclusion. Since efflux and penetration can be general resistance mechanisms, tests were conducted with other antibiotics. The rapA biofilm was also more sensitive to norfloxacin, chloramphenicol, and gentamicin.

摘要

通过使用高通量筛选方法,分离出一株在rapA基因上发生突变的尿路致病性大肠杆菌菌株的突变体。该突变体形成了具有正常结构的生物膜,但对青霉素G的抗性降低,尽管该突变不影响浮游细胞的抗性。转录组分析表明,在突变体生物膜中有22个基因下调。其中一个基因是yhcQ,它编码一种假定的多药抗性泵。该基因发生突变的突变体也形成了抗性降低的生物膜,尽管其效果不如rapA突变明显。因此,由rapA调控基因控制的另一种机制参与了野生型生物膜的抗性。对这一机制的探索是基于rapA生物膜中另一个下调基因yeeZ被怀疑参与细胞壁外相关功能这一事实。对野生型和rapA菌株生物膜基质的比较显示,突变体生物膜中的多糖数量和覆盖范围减少。此外,(荧光)功能性青霉素G同系物Bocillin FL更容易穿透突变体生物膜。结果强烈表明野生型生物膜对青霉素G的抗性存在双重机制,即穿透受阻和有效外排。对大肠杆菌K-12菌株的研究结果也指向了相同的结论。由于外排和穿透可能是普遍的抗性机制,因此对其他抗生素进行了测试。rapA生物膜对诺氟沙星、氯霉素和庆大霉素也更敏感。

相似文献

1
Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms.
Antimicrob Agents Chemother. 2007 Oct;51(10):3650-8. doi: 10.1128/AAC.00601-07. Epub 2007 Jul 30.
2
Common beta-lactamases inhibit bacterial biofilm formation.
Mol Microbiol. 2005 Nov;58(4):1012-24. doi: 10.1111/j.1365-2958.2005.04892.x.
4
YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling.
Appl Environ Microbiol. 2006 Apr;72(4):2449-59. doi: 10.1128/AEM.72.4.2449-2459.2006.
5
Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12.
Biocontrol Sci. 2011 Jun;16(2):69-72. doi: 10.4265/bio.16.69.
6
Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin.
Appl Environ Microbiol. 2007 Jul;73(13):4100-9. doi: 10.1128/AEM.00360-07. Epub 2007 May 4.
7
5-Fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound.
Appl Microbiol Biotechnol. 2009 Mar;82(3):525-33. doi: 10.1007/s00253-009-1860-8. Epub 2009 Jan 27.
10
Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes.
Antimicrob Agents Chemother. 2009 Nov;53(11):4628-39. doi: 10.1128/AAC.00454-09. Epub 2009 Aug 31.

引用本文的文献

1
Genomic heterogeneity and lineage-specific beta-lactamases in recurrent bloodstream infection patients.
Emerg Microbes Infect. 2025 Dec;14(1):2547721. doi: 10.1080/22221751.2025.2547721. Epub 2025 Aug 26.
2
RapA opens the RNA polymerase clamp to disrupt post-termination complexes and prevent cytotoxic R-loop formation.
Nat Struct Mol Biol. 2025 Apr;32(4):639-649. doi: 10.1038/s41594-024-01447-8. Epub 2025 Jan 8.
4
Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability.
Microbiol Mol Biol Rev. 2024 Sep 26;88(3):e0014423. doi: 10.1128/mmbr.00144-23. Epub 2024 Aug 19.
5
Biofilms as Battlefield Armor for Bacteria against Antibiotics: Challenges and Combating Strategies.
Microorganisms. 2023 Oct 20;11(10):2595. doi: 10.3390/microorganisms11102595.
6
Recycling of bacterial RNA polymerase by the Swi2/Snf2 ATPase RapA.
Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2303849120. doi: 10.1073/pnas.2303849120. Epub 2023 Jul 5.
9
Recycling of Bacterial RNA Polymerase by the Swi2/Snf2 ATPase RapA.
bioRxiv. 2023 Mar 24:2023.03.22.533849. doi: 10.1101/2023.03.22.533849.
10

本文引用的文献

1
Temporal gene-expression in Escherichia coli K-12 biofilms.
Environ Microbiol. 2007 Feb;9(2):332-46. doi: 10.1111/j.1462-2920.2006.01143.x.
2
Temporal quorum-sensing induction regulates Vibrio cholerae biofilm architecture.
Infect Immun. 2007 Jan;75(1):122-6. doi: 10.1128/IAI.01190-06. Epub 2006 Oct 30.
3
Characterization of E. coli O24 and O56 O antigen gene clusters reveals a complex evolutionary history of the O24 gene cluster.
Curr Microbiol. 2006 Dec;53(6):470-6. doi: 10.1007/s00284-006-0032-7. Epub 2006 Oct 26.
6
Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms.
Antimicrob Agents Chemother. 2005 Sep;49(9):3858-67. doi: 10.1128/AAC.49.9.3858-3867.2005.
7
CDD: a Conserved Domain Database for protein classification.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D192-6. doi: 10.1093/nar/gki069.
8
Host subversion by formation of intracellular bacterial communities in the urinary tract.
Microbes Infect. 2004 Oct;6(12):1094-101. doi: 10.1016/j.micinf.2004.05.023.
9
Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis.
Trends Microbiol. 2004 Sep;12(9):424-30. doi: 10.1016/j.tim.2004.07.005.
10
Bacterial biofilms: from the natural environment to infectious diseases.
Nat Rev Microbiol. 2004 Feb;2(2):95-108. doi: 10.1038/nrmicro821.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验