Chow James C L, Grigorov Grigor N
Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Hospital, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
Phys Med Biol. 2007 Jul 7;52(13):3965-77. doi: 10.1088/0031-9155/52/13/020. Epub 2007 Jun 6.
The impact of the oblique electron beam on the lateral buildup ratio (LBR), used in the electron pencil beam model to predict the per cent depth dose (PDD) and dose per monitor unit (MU) for an irregular electron field, was examined using Monte Carlo simulation. The EGSnrc-based Monte Carlo code was used to model electron beams produced by a Varian 21 EX linear accelerator for different beam energies, angles of obliquity and field sizes. The Monte Carlo phase space model was verified by measurements using electron diode and radiographic film. For PDDs of oblique electron beams, it is found that the depth of maximum dose (d(m)) shifts towards the surface as the beam obliquity increases. Moreover, for increasing the beam angle of obliquity, the depth doses just beyond d(m) decrease with depth. The depth doses then increase eventually in a deeper depth close to the practical range. The LBRs and pencil beam radial spread function, calculated using PDDs with different field sizes, are found varying with electron beam energies, angles of obliquity and cutout diameters. It is found that LBR increases along the normalized depth when the beam angle of obliquity increases. This results in a decrease of the radial spread function with an increase of beam obliquity. When the size of the electron field increases, the variation of LBR with beam angle of obliquity decreases. It should be noted that when calculating dose per MU for an oblique electron beam with an irregular field misunderstanding and neglecting the effect of beam obliquity would lead to a significant deviation. A database of LBRs for oblique electron beams can be created using Monte Carlo simulation conveniently and is recommended when an oblique beam is used in electron radiotherapy.
利用蒙特卡罗模拟研究了倾斜电子束对电子笔形束模型中横向积累因子(LBR)的影响,该模型用于预测不规则电子野的百分深度剂量(PDD)和每监测单位剂量(MU)。基于EGSnrc的蒙特卡罗代码用于模拟Varian 21 EX直线加速器产生的不同束能量、倾斜角度和野大小的电子束。通过使用电子二极管和射线照相胶片的测量对蒙特卡罗相空间模型进行了验证。对于倾斜电子束的PDD,发现随着束倾斜度增加,最大剂量深度(d(m))向表面移动。此外,随着束倾斜角度增加,刚好超过d(m)的深度剂量随深度减小。然后深度剂量最终在接近实际射程的更深深度增加。使用不同野大小的PDD计算得到的LBR和笔形束径向扩展函数随电子束能量、倾斜角度和限光筒直径而变化。发现当束倾斜角度增加时,LBR沿归一化深度增加。这导致径向扩展函数随着束倾斜度增加而减小。当电子野大小增加时,LBR随束倾斜角度的变化减小。应当注意,在计算不规则野倾斜电子束的每MU剂量时,误解和忽略束倾斜度的影响会导致显著偏差。利用蒙特卡罗模拟可以方便地创建倾斜电子束的LBR数据库,并且在电子放射治疗中使用倾斜束时推荐使用该数据库。