Suppr超能文献

预防淀粉样聚集作为蛋白质进化的驱动力。

Prevention of amyloid-like aggregation as a driving force of protein evolution.

作者信息

Monsellier Elodie, Chiti Fabrizio

机构信息

Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, I-50134, Firenze, Italy.

出版信息

EMBO Rep. 2007 Aug;8(8):737-42. doi: 10.1038/sj.embor.7401034.

Abstract

Uncontrolled protein aggregation is a constant challenge in all compartments of living organisms. The failure of a peptide or protein to remain soluble often results in pathology. So far, more than 40 human diseases have been associated with the formation of extracellular fibrillar aggregates - known as amyloid fibrils - or structurally related intracellular deposits. It is well known that molecular chaperones and elaborate quality control mechanisms exist in the cell to counteract aggregation. However, an increasing number of reports during the past few years indicate that proteins have also evolved structural and sequence-based strategies to prevent aggregation. This review describes these strategies and the selection pressures that exist on protein sequences to combat their uncontrolled aggregation. We will describe the different types of mechanism evolved by proteins that adopt different conformational states including normally folded proteins, intrinsically disordered polypeptide chains, elastomeric systems and multimodular proteins.

摘要

不受控制的蛋白质聚集是生物体所有区室中持续存在的挑战。肽或蛋白质无法保持可溶性通常会导致病变。到目前为止,已有40多种人类疾病与细胞外纤维状聚集体(称为淀粉样原纤维)或结构相关的细胞内沉积物的形成有关。众所周知,细胞中存在分子伴侣和精细的质量控制机制来对抗聚集。然而,在过去几年中,越来越多的报告表明,蛋白质也进化出了基于结构和序列的策略来防止聚集。本综述描述了这些策略以及蛋白质序列上存在的对抗其不受控制聚集的选择压力。我们将描述蛋白质进化出的不同类型机制,这些机制采用不同的构象状态,包括正常折叠的蛋白质、内在无序的多肽链、弹性体系统和多模块蛋白质。

相似文献

1
Prevention of amyloid-like aggregation as a driving force of protein evolution.
EMBO Rep. 2007 Aug;8(8):737-42. doi: 10.1038/sj.embor.7401034.
2
Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
Ann N Y Acad Sci. 2005 Dec;1066:181-221. doi: 10.1196/annals.1363.030.
4
Proline and glycine control protein self-organization into elastomeric or amyloid fibrils.
Structure. 2006 Nov;14(11):1667-76. doi: 10.1016/j.str.2006.09.008.
5
Structure analysis of an amyloid-forming model peptide by a systematic glycine and proline scan.
Biomacromolecules. 2011 Aug 8;12(8):2988-96. doi: 10.1021/bm200587m. Epub 2011 Jul 13.
6
Folding superfunnel to describe cooperative folding of interacting proteins.
Proteins. 2016 Jul;84(7):1009-16. doi: 10.1002/prot.25051. Epub 2016 May 3.
7
From the Evolution of Protein Sequences Able to Resist Self-Assembly to the Prediction of Aggregation Propensity.
Int Rev Cell Mol Biol. 2017;329:1-47. doi: 10.1016/bs.ircmb.2016.08.008. Epub 2016 Oct 27.
8
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation.
Int J Biol Macromol. 2019 Aug 1;134:1022-1037. doi: 10.1016/j.ijbiomac.2019.05.109. Epub 2019 May 22.
9
Amyloid fibril formation by a normally folded protein in the absence of denaturants and agitation.
Amyloid. 2013 Dec;20(4):226-32. doi: 10.3109/13506129.2013.830246. Epub 2013 Sep 20.

引用本文的文献

1
C-reactive protein: the nexus between inflammation and protein misfolding diseases.
Front Immunol. 2025 Jun 4;16:1612703. doi: 10.3389/fimmu.2025.1612703. eCollection 2025.
2
Chemical Evolution of Early Macromolecules: From Prebiotic Oligopeptides to Self-Organizing Biosystems via Amyloid Formation.
Chemistry. 2025 May 22;31(29):e202404669. doi: 10.1002/chem.202404669. Epub 2025 May 2.
3
CsgA gatekeeper residues control nucleation but not stability of functional amyloid.
Protein Sci. 2024 Oct;33(10):e5178. doi: 10.1002/pro.5178.
4
Aggrescan4D: structure-informed analysis of pH-dependent protein aggregation.
Nucleic Acids Res. 2024 Jul 5;52(W1):W170-W175. doi: 10.1093/nar/gkae382.
5
A3D Model Organism Database (A3D-MODB): a database for proteome aggregation predictions in model organisms.
Nucleic Acids Res. 2024 Jan 5;52(D1):D360-D367. doi: 10.1093/nar/gkad942.
7
Mechanisms and pathology of protein misfolding and aggregation.
Nat Rev Mol Cell Biol. 2023 Dec;24(12):912-933. doi: 10.1038/s41580-023-00647-2. Epub 2023 Sep 8.
8
Molecular Aspects of Insulin Aggregation and Various Therapeutic Interventions.
ACS Bio Med Chem Au. 2022 Jan 25;2(3):205-221. doi: 10.1021/acsbiomedchemau.1c00054. eCollection 2022 Jun 15.
10
Evolution and co-evolution: insights into the divergence of plant heat shock factor genes.
Physiol Mol Biol Plants. 2022 May;28(5):1029-1047. doi: 10.1007/s12298-022-01183-7. Epub 2022 May 19.

本文引用的文献

1
The distribution of residues in a polypeptide sequence is a determinant of aggregation optimized by evolution.
Biophys J. 2007 Dec 15;93(12):4382-91. doi: 10.1529/biophysj.107.111336. Epub 2007 Aug 31.
2
Life on the edge: a link between gene expression levels and aggregation rates of human proteins.
Trends Biochem Sci. 2007 May;32(5):204-6. doi: 10.1016/j.tibs.2007.03.005. Epub 2007 Apr 6.
5
Proline and glycine control protein self-organization into elastomeric or amyloid fibrils.
Structure. 2006 Nov;14(11):1667-76. doi: 10.1016/j.str.2006.09.008.
6
Point mutations in protein globular domains: contributions from function, stability and misfolding.
J Mol Biol. 2006 Oct 20;363(2):422-32. doi: 10.1016/j.jmb.2006.08.020. Epub 2006 Aug 12.
8
Improving the stability of an antibody variable fragment by a combination of knowledge-based approaches: validation and mechanisms.
J Mol Biol. 2006 Sep 22;362(3):580-93. doi: 10.1016/j.jmb.2006.07.044. Epub 2006 Jul 28.
9
Protein misfolding, functional amyloid, and human disease.
Annu Rev Biochem. 2006;75:333-66. doi: 10.1146/annurev.biochem.75.101304.123901.
10
Molecular chaperones and protein quality control.
Cell. 2006 May 5;125(3):443-51. doi: 10.1016/j.cell.2006.04.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验