Schabus M, Dang-Vu T T, Albouy G, Balteau E, Boly M, Carrier J, Darsaud A, Degueldre C, Desseilles M, Gais S, Phillips C, Rauchs G, Schnakers C, Sterpenich V, Vandewalle G, Luxen A, Maquet P
Cyclotron Research Centre, University of Liège, B-4000 Liège, and Department of Psychiatry, Centre Hospitalier Universitaire de Liège, Belgium.
Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13164-9. doi: 10.1073/pnas.0703084104. Epub 2007 Aug 1.
In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the existence of two different spindle types, we characterized the activity associated with slow (11-13 Hz) and fast (13-15 Hz) spindles, identified as discrete events during non-rapid eye movement sleep, in non-sleep-deprived human volunteers, using simultaneous electroencephalography and functional MRI. An activation pattern common to both spindle types involved the thalami, paralimbic areas (anterior cingulate and insular cortices), and superior temporal gyri. No thalamic difference was detected in the direct comparison between slow and fast spindles although some thalamic areas were preferentially activated in relation to either spindle type. Beyond the common activation pattern, the increases in cortical activity differed significantly between the two spindle types. Slow spindles were associated with increased activity in the superior frontal gyrus. In contrast, fast spindles recruited a set of cortical regions involved in sensorimotor processing, as well as the mesial frontal cortex and hippocampus. The recruitment of partially segregated cortical networks for slow and fast spindles further supports the existence of two spindle types during human non-rapid eye movement sleep, with potentially different functional significance.
在人类中,一些证据表明睡眠期间存在两种不同类型的纺锤波,它们在头皮地形图以及可能的某些调节方面存在差异。为了测试两种不同纺锤波类型的存在,我们使用同步脑电图和功能磁共振成像,对非睡眠剥夺的人类志愿者在非快速眼动睡眠期间被识别为离散事件的慢(11 - 13赫兹)和快(13 - 15赫兹)纺锤波相关活动进行了特征描述。两种纺锤波类型共有的激活模式涉及丘脑、边缘旁区域(前扣带回和岛叶皮质)以及颞上回。在慢纺锤波和快纺锤波的直接比较中未检测到丘脑差异,尽管一些丘脑区域相对于任一纺锤波类型有优先激活。除了共同激活模式外,两种纺锤波类型的皮质活动增加存在显著差异。慢纺锤波与额上回活动增加有关。相比之下,快纺锤波激活了一组参与感觉运动处理的皮质区域,以及内侧额叶皮质和海马体。慢纺锤波和快纺锤波对部分分离的皮质网络的激活进一步支持了人类非快速眼动睡眠期间两种纺锤波类型的存在,其可能具有不同的功能意义。