Decatur Wayne A, Liang Xue-hai, Piekna-Przybylska Dorota, Fournier Maurille J
Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA.
Methods Enzymol. 2007;425:283-316. doi: 10.1016/S0076-6879(07)25013-X.
The small nucleolar RNAs (snoRNAs) are associated with proteins in ribonucleoprotein complexes called snoRNPs ("snorps"). These complexes create modified nucleotides in preribosomal RNA and other RNAs and participate in nucleolytic cleavages of pre-rRNA. The various reactions occur in site-specific fashion, and the mature rRNAs are ultimately incorporated into cytoplasmic ribosomes. Most snoRNAs exist in two structural classes, and most members in each class are involved in nucleotide modification reactions. Guide snoRNAs in the "box C/D" class target methylation of the 2'-hydroxyl moiety, to form 2'-O-methylated nucleotides (Nm), whereas guide snoRNAs in the "box H/ACA" class target specific uridines for conversion to pseudouridine (Psi). The rRNA nucleotides modified in this manner are numerous, totaling approximately 100 in yeast and twice that number in humans. Although the chemistry of the modifications and the factors involved in their formation are largely explained, very little is known about the influence of the copious snoRNA-guided nucleotide modifications on rRNA activity and ribosome function. Among eukaryotic organisms the sites of rRNA modification and the corresponding guide snoRNAs have been best characterized in S. cerevisiae, making this a model organism for analyzing the consequences of modification. This chapter presents approaches to characterizing rRNA modification effects in yeast and includes strategies for evaluating a variety of specific rRNA functions. To aid in planning, a package of bioinformatics tools is described that enables investigators to correlate guide function with targeted ribosomal sites in several contexts. Genetic procedures are presented for depleting modifications at one or more rRNA sites, including ablation of all Nm or Psi modifications made by snoRNPs, and for introducing modifications at novel sites. Methods are also included for characterizing modification effects on cell growth, antibiotic sensitivity, rRNA processing, formation of various rRNP complexes, translation activity, and rRNA structure within the ribosome.
小核仁RNA(snoRNAs)与称为snoRNP(“snorps”)的核糖核蛋白复合物中的蛋白质相关联。这些复合物在核糖体前体RNA和其他RNA中产生修饰的核苷酸,并参与前体rRNA的核酸裂解。各种反应以位点特异性方式发生,成熟的rRNA最终被整合到细胞质核糖体中。大多数snoRNAs存在于两种结构类别中,并且每个类别中的大多数成员都参与核苷酸修饰反应。“C/D盒”类中的引导snoRNAs靶向2'-羟基部分的甲基化,以形成2'-O-甲基化核苷酸(Nm),而“H/ACA盒”类中的引导snoRNAs靶向特定的尿苷以转化为假尿苷(Ψ)。以这种方式修饰的rRNA核苷酸数量众多,在酵母中总计约100个,在人类中则是该数量的两倍。尽管修饰的化学性质及其形成所涉及的因素在很大程度上已得到解释,但关于大量snoRNA引导的核苷酸修饰对rRNA活性和核糖体功能的影响却知之甚少。在真核生物中,rRNA修饰位点和相应的引导snoRNAs在酿酒酵母中得到了最好的表征,这使其成为分析修饰后果的模式生物。本章介绍了表征酵母中rRNA修饰效应的方法,包括评估各种特定rRNA功能的策略。为了帮助进行实验设计,描述了一套生物信息学工具,使研究人员能够在多种情况下将引导功能与靶向核糖体位点相关联。还介绍了用于去除一个或多个rRNA位点修饰的遗传程序,包括消除snoRNPs进行的所有Nm或Ψ修饰,以及在新位点引入修饰。还包括用于表征修饰对细胞生长、抗生素敏感性、rRNA加工、各种rRNP复合物形成、翻译活性以及核糖体中rRNA结构影响的方法。