Dinglasan Rhoel R, Kalume Dario E, Kanzok Stefan M, Ghosh Anil K, Muratova Olga, Pandey Akhilesh, Jacobs-Lorena Marcelo
Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13461-6. doi: 10.1073/pnas.0702239104. Epub 2007 Aug 2.
Malaria parasites must undergo development within mosquitoes to be transmitted to a new host. Antivector transmission-blocking vaccines inhibit parasite development by preventing ookinete interaction with mosquito midgut ligands. Therefore, the discovery of novel midgut antigen targets is paramount. Jacalin (a lectin) inhibits ookinete attachment by masking glycan ligands on midgut epithelial surface glycoproteins. However, the identities of these midgut glycoproteins have remained unknown. Here we report on the molecular characterization of an Anopheles gambiae aminopeptidase N (AgAPN1) as the predominant jacalin target on the mosquito midgut luminal surface and provide evidence for its role in ookinete invasion. alpha-AgAPN1 IgG strongly inhibited both Plasmodium berghei and Plasmodium falciparum development in different mosquito species, implying that AgAPN1 has a conserved role in ookinete invasion of the midgut. Molecules targeting single midgut antigens seldom achieve complete abrogation of parasite development. However, the combined blocking activity of alpha-AgAPN1 IgG and an unrelated inhibitory peptide, SM1, against P. berghei was incomplete. We also found that SM1 can block only P. berghei, whereas alpha-AgAPN1 IgG can block both parasite species significantly. Therefore, we hypothesize that ookinetes can evade inhibition by two potent transmission-blocking molecules, presumably through the use of other ligands, and that this process further partitions murine from human parasite midgut invasion models. These results advance our understanding of malaria parasite-mosquito host interactions and guide in the design of transmission-blocking vaccines.
疟原虫必须在蚊子体内发育才能传播给新宿主。抗媒介传播阻断疫苗通过阻止动合子与蚊子中肠配体相互作用来抑制寄生虫发育。因此,发现新的中肠抗原靶点至关重要。红豆蔻凝集素(一种凝集素)通过掩盖中肠上皮表面糖蛋白上的聚糖配体来抑制动合子附着。然而,这些中肠糖蛋白的身份一直未知。在此,我们报告冈比亚按蚊氨肽酶N(AgAPN1)的分子特征,它是蚊子中肠腔表面主要的红豆蔻凝集素靶点,并提供其在动合子入侵中作用的证据。α-AgAPN1 IgG强烈抑制不同蚊子物种中伯氏疟原虫和恶性疟原虫的发育,这意味着AgAPN1在动合子入侵中肠方面具有保守作用。针对单一中肠抗原的分子很少能完全消除寄生虫发育。然而,α-AgAPN1 IgG和一种不相关的抑制肽SM1对伯氏疟原虫的联合阻断活性并不完全。我们还发现SM1只能阻断伯氏疟原虫,而α-AgAPN1 IgG能显著阻断这两种寄生虫物种。因此,我们推测动合子可能通过使用其他配体来逃避两种有效的传播阻断分子的抑制,并且这个过程进一步区分了鼠疟原虫与人疟原虫的中肠入侵模型。这些结果增进了我们对疟原虫-蚊子宿主相互作用的理解,并为传播阻断疫苗的设计提供了指导。