Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain.
School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom.
Front Cell Infect Microbiol. 2023 May 26;13:1146030. doi: 10.3389/fcimb.2023.1146030. eCollection 2023.
Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review and systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.
一些寄生虫病,如疟疾,需要两个宿主才能完成其生命周期:人类和昆虫媒介。尽管大多数疟疾研究都集中在人类宿主中寄生虫的发育,但在媒介中的生命周期对疾病的传播至关重要。生命周期中的蚊子阶段代表着一个主要的人口瓶颈,对于阻断传播的策略至关重要。此外,正是在媒介中发生了有性重组,产生了“遗传多样性”,这可能有利于耐药性的传播,并阻碍有效的疫苗开发。然而,由于缺乏模拟自然环境的实验系统,同时允许控制和标准化相互作用的复杂性,对媒介-寄生虫相互作用的理解受到了阻碍。干细胞技术的突破为研究人类病原体相互作用提供了新的见解,但这些进展尚未转化为昆虫模型。在这里,我们回顾了迄今为止用于研究蚊子中疟疾的系统。我们还强调了单细胞技术的相关性,以便以更高的分辨率和深度来深入了解这些相互作用。最后,我们强调有必要开发强大且易于使用的系统(组织和器官),以研究寄生虫-媒介相互作用的分子机制,为疟疾控制提供新的靶标。