Suppr超能文献

用于周围神经全面定量组织形态计量学的二元成像分析

Binary imaging analysis for comprehensive quantitative histomorphometry of peripheral nerve.

作者信息

Hunter Daniel A, Moradzadeh Arash, Whitlock Elizabeth L, Brenner Michael J, Myckatyn Terence M, Wei Cindy H, Tung Thomas H H, Mackinnon Susan E

机构信息

Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, Saint Louis, MO 63110, United States.

出版信息

J Neurosci Methods. 2007 Oct 15;166(1):116-24. doi: 10.1016/j.jneumeth.2007.06.018. Epub 2007 Jun 30.

Abstract

Quantitative histomorphometry is the current gold standard for objective measurement of nerve architecture and its components. Many methods still in use rely heavily upon manual techniques that are prohibitively time consuming, predisposing to operator fatigue, sampling error, and overall limited reproducibility. More recently, investigators have attempted to combine the speed of automated morphometry with the accuracy of manual and semi-automated methods. Systematic refinements in binary imaging analysis techniques combined with an algorithmic approach allow for more exhaustive characterization of nerve parameters in the surgically relevant injury paradigms of regeneration following crush, transection, and nerve gap injuries. The binary imaging method introduced here uses multiple bitplanes to achieve reproducible, high throughput quantitative assessment of peripheral nerve. Number of myelinated axons, myelinated fiber diameter, myelin thickness, fiber distributions, myelinated fiber density, and neural debris can be quantitatively evaluated with stratification of raw data by nerve component. Results of this semi-automated method are validated by comparing values against those obtained with manual techniques. The use of this approach results in more rapid, accurate, and complete assessment of myelinated axons than manual techniques.

摘要

定量组织形态计量学是目前客观测量神经结构及其组成部分的金标准。许多仍在使用的方法严重依赖手工技术,这些技术耗时过长,容易导致操作人员疲劳、抽样误差以及总体上有限的可重复性。最近,研究人员试图将自动形态计量学的速度与手工和半自动方法的准确性相结合。二元成像分析技术的系统改进与算法方法相结合,能够在挤压、横断和神经间隙损伤后再生的手术相关损伤模型中,更详尽地描述神经参数。这里介绍的二元成像方法使用多个位平面,以实现对外周神经的可重复、高通量定量评估。有髓轴突数量、有髓纤维直径、髓鞘厚度、纤维分布、有髓纤维密度和神经碎片可以通过按神经成分对原始数据进行分层来定量评估。通过将该半自动方法的值与手工技术获得的值进行比较,验证了该方法的结果。与手工技术相比,使用这种方法可以更快速、准确和完整地评估有髓轴突。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验