Obeng Enoch, Shen Baoguo, Wang Wei, Xie Zhenyuan, Zhang Wenyi, Li Zhixing, Yao Qinqin, Wu Wencan
State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China.
Regen Biomater. 2024 Nov 22;12:rbae133. doi: 10.1093/rb/rbae133. eCollection 2025.
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
神经损伤可能等同于严重损伤,诸如使用自体移植或手术等标准治疗会带来并发症且缓解期缩短。与视神经再生相关的机制似乎尚未完全揭示。因对视神经的直接或间接损伤而导致视力丧失的普遍发生率令人担忧。目前,神经引导导管(NGC)的使用在一定程度上已被证明是可靠的,尤其是在啮齿动物和周围神经系统中,这是再生和功能恢复的一个有前景的领域,然而在视神经中,这种NGC的功能似乎并不出名。NGC应用不足以及视神经再生不完全可能是由于细胞和分子活动方面的信息有限。本综述旨在解决两个主要因素:(i)创伤性视神经病变中涉及的细胞和分子活动,以及(ii)NGC在视神经再生中的应用。涵盖的细胞和分子概念的理解包括眼部炎症、轴突生长的外在信号和内在信号、移动锌的作用、与视神经相关的钙因子、基于分子信息的纳米技术替代疗法,以及最后涵盖适用生物材料和使用NGC进行再生的纳米技术展望。还讨论了视神经再生的挑战和未来展望。在众多使用的方法中,细胞和分子机制的综合作用可能为NGC在视神经再生中的有效应用奠定基础。