Wang Zhisong, Feng Min, Zheng Wenwei, Fan Dagong
Institute of Modern Physics and Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, China.
Biophys J. 2007 Nov 15;93(10):3363-72. doi: 10.1529/biophysj.107.108233. Epub 2007 Aug 3.
Conventional kinesin is a dimeric motor protein that transports membranous organelles toward the plus-end of microtubules (MTs). Individual kinesin dimers show steadfast directionality and hundreds of consecutive steps, yet the detailed physical mechanism remains unclear. Here we compute free energies for the entire dimer-MT system for all possible interacting configurations by taking full account of molecular details. Employing merely first principles and several measured binding and barrier energies, the system-level analysis reveals insurmountable energy gaps between configurations, asymmetric ground state caused by mechanically lifted configurational degeneracy, and forbidden transitions ensuring coordination between both motor domains for alternating catalysis. This wealth of physical effects converts a kinesin dimer into a molecular ratchet-and-pawl device, which determinedly locks the dimer's movement into the MT plus-end and ensures consecutive steps in hand-over-hand gait. Under a certain range of extreme loads, however, the ratchet-and-pawl device becomes defective but not entirely abolished to allow consecutive back-steps. This study yielded quantitative evidence that kinesin's multiple molecular properties have been evolutionarily adapted to fine-tune the ratchet-and-pawl device so as to ensure the motor's distinguished performance.
传统的驱动蛋白是一种二聚体马达蛋白,可将膜性细胞器向微管(MT)的正端运输。单个驱动蛋白二聚体表现出稳定的方向性和数百个连续的步骤,但其详细的物理机制仍不清楚。在这里,我们通过充分考虑分子细节,计算了整个二聚体-MT系统在所有可能相互作用构型下的自由能。仅利用第一原理以及几个测得的结合能和势垒能,系统层面的分析揭示了构型之间不可逾越的能量差距、由机械解除构型简并导致的不对称基态,以及确保两个马达结构域之间协调交替催化的禁戒跃迁。这些丰富的物理效应将驱动蛋白二聚体转化为一种分子棘爪装置,它坚定地将二聚体的运动锁定在MT的正端,并确保在双手交替步态中连续迈步。然而,在一定范围的极端负载下,棘爪装置会出现缺陷,但不会完全失效,从而允许连续后退步。这项研究提供了定量证据,表明驱动蛋白的多种分子特性在进化过程中得到了调整,以微调棘爪装置,从而确保马达的卓越性能。