Suppr超能文献

驱动蛋白是一种经过进化微调的分子棘轮棘爪装置,具有明确锁定的方向。

Kinesin is an evolutionarily fine-tuned molecular ratchet-and-pawl device of decisively locked direction.

作者信息

Wang Zhisong, Feng Min, Zheng Wenwei, Fan Dagong

机构信息

Institute of Modern Physics and Applied Ion Beam Physics Laboratory, Fudan University, Shanghai, China.

出版信息

Biophys J. 2007 Nov 15;93(10):3363-72. doi: 10.1529/biophysj.107.108233. Epub 2007 Aug 3.

Abstract

Conventional kinesin is a dimeric motor protein that transports membranous organelles toward the plus-end of microtubules (MTs). Individual kinesin dimers show steadfast directionality and hundreds of consecutive steps, yet the detailed physical mechanism remains unclear. Here we compute free energies for the entire dimer-MT system for all possible interacting configurations by taking full account of molecular details. Employing merely first principles and several measured binding and barrier energies, the system-level analysis reveals insurmountable energy gaps between configurations, asymmetric ground state caused by mechanically lifted configurational degeneracy, and forbidden transitions ensuring coordination between both motor domains for alternating catalysis. This wealth of physical effects converts a kinesin dimer into a molecular ratchet-and-pawl device, which determinedly locks the dimer's movement into the MT plus-end and ensures consecutive steps in hand-over-hand gait. Under a certain range of extreme loads, however, the ratchet-and-pawl device becomes defective but not entirely abolished to allow consecutive back-steps. This study yielded quantitative evidence that kinesin's multiple molecular properties have been evolutionarily adapted to fine-tune the ratchet-and-pawl device so as to ensure the motor's distinguished performance.

摘要

传统的驱动蛋白是一种二聚体马达蛋白,可将膜性细胞器向微管(MT)的正端运输。单个驱动蛋白二聚体表现出稳定的方向性和数百个连续的步骤,但其详细的物理机制仍不清楚。在这里,我们通过充分考虑分子细节,计算了整个二聚体-MT系统在所有可能相互作用构型下的自由能。仅利用第一原理以及几个测得的结合能和势垒能,系统层面的分析揭示了构型之间不可逾越的能量差距、由机械解除构型简并导致的不对称基态,以及确保两个马达结构域之间协调交替催化的禁戒跃迁。这些丰富的物理效应将驱动蛋白二聚体转化为一种分子棘爪装置,它坚定地将二聚体的运动锁定在MT的正端,并确保在双手交替步态中连续迈步。然而,在一定范围的极端负载下,棘爪装置会出现缺陷,但不会完全失效,从而允许连续后退步。这项研究提供了定量证据,表明驱动蛋白的多种分子特性在进化过程中得到了调整,以微调棘爪装置,从而确保马达的卓越性能。

相似文献

1
Kinesin is an evolutionarily fine-tuned molecular ratchet-and-pawl device of decisively locked direction.
Biophys J. 2007 Nov 15;93(10):3363-72. doi: 10.1529/biophysj.107.108233. Epub 2007 Aug 3.
2
The intrinsic load-resisting capacity of kinesin.
Phys Biol. 2009 Apr 15;6(3):036002. doi: 10.1088/1478-3975/6/3/036002.
3
Modeling motility of the kinesin dimer from molecular properties of individual monomers.
Biochemistry. 2008 Apr 22;47(16):4733-42. doi: 10.1021/bi800072p. Epub 2008 Mar 28.
4
The E-hook of tubulin interacts with kinesin's head to increase processivity and speed.
Biophys J. 2005 Nov;89(5):3223-34. doi: 10.1529/biophysj.104.057505. Epub 2005 Aug 12.
5
Kinesin's network of chemomechanical motor cycles.
Phys Rev Lett. 2007 Jun 22;98(25):258102. doi: 10.1103/PhysRevLett.98.258102. Epub 2007 Jun 20.
6
Kinesin's backsteps under mechanical load.
Phys Chem Chem Phys. 2009 Jun 28;11(24):4899-910. doi: 10.1039/b903536b. Epub 2009 May 18.
7
Kinesin's biased stepping mechanism: amplification of neck linker zippering.
Biophys J. 2006 Oct 1;91(7):2416-26. doi: 10.1529/biophysj.106.087049. Epub 2006 Jul 14.
8
A chemically reversible Brownian motor: application to kinesin and Ncd.
Biophys J. 1999 Aug;77(2):993-1002. doi: 10.1016/S0006-3495(99)76950-X.
9
The load dependence of kinesin's mechanical cycle.
Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8539-44. doi: 10.1073/pnas.94.16.8539.
10

引用本文的文献

2
Chemically Fueled Self-Assembly in Biology and Chemistry.
Angew Chem Int Ed Engl. 2021 Sep 6;60(37):20120-20143. doi: 10.1002/anie.202100274. Epub 2021 Apr 7.
4
Polymer-Based Accurate Positioning: An Exact Worm-like-Chain Study.
ACS Omega. 2018 Oct 29;3(10):14318-14326. doi: 10.1021/acsomega.8b01448. eCollection 2018 Oct 31.
5
Processivity of dimeric kinesin-1 molecular motors.
FEBS Open Bio. 2018 Jul 20;8(8):1332-1351. doi: 10.1002/2211-5463.12486. eCollection 2018 Aug.
6
How Well Can DNA Rupture DNA? Shearing and Unzipping Forces inside DNA Nanostructures.
ACS Omega. 2018 Jan 31;3(1):292-301. doi: 10.1021/acsomega.7b01692. Epub 2018 Jan 10.
7
Mechanism of processive movement of monomeric and dimeric kinesin molecules.
Int J Biol Sci. 2010 Nov 3;6(7):665-74. doi: 10.7150/ijbs.6.665.

本文引用的文献

1
Epitaxial growth and the art of computer simulations.
Science. 1992 Feb 28;255(5048):1088-92. doi: 10.1126/science.255.5048.1088.
2
Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain.
Proc Natl Acad Sci U S A. 2006 May 23;103(21):8054-9. doi: 10.1073/pnas.0600931103. Epub 2006 May 12.
3
On the hand-over-hand mechanism of kinesin.
Proc Natl Acad Sci U S A. 2006 May 23;103(21):8072-7. doi: 10.1073/pnas.0602828103. Epub 2006 May 12.
4
Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia.
Neurogenetics. 2006 Mar;7(1):47-50. doi: 10.1007/s10048-005-0027-8. Epub 2006 Feb 18.
5
Entropy rectifies the Brownian steps of kinesin.
Nat Chem Biol. 2005 Nov;1(6):342-7. doi: 10.1038/nchembio741. Epub 2005 Oct 9.
6
Kinesin crouches to sprint but resists pushing.
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16209-14. doi: 10.1073/pnas.0507802102. Epub 2005 Oct 17.
7
Mechanics of the kinesin step.
Nature. 2005 May 19;435(7040):308-12. doi: 10.1038/nature03528.
8
Bioinspired laser-operated molecular locomotive.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 1):031903. doi: 10.1103/PhysRevE.70.031903. Epub 2004 Sep 15.
9
Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia.
Neurology. 2004 Sep 28;63(6):1108-10. doi: 10.1212/01.wnl.0000138731.60693.d2.
10
KIF1A alternately uses two loops to bind microtubules.
Science. 2004 Jul 30;305(5684):678-83. doi: 10.1126/science.1096621.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验