Taniguchi Yuichi, Nishiyama Masayoshi, Ishii Yoshiharu, Yanagida Toshio
Soft Nanomachine Project, Japan Science and Technology Agency, 1-3, Yamadaoka, Suita, Osaka, 565-0871, Japan.
Nat Chem Biol. 2005 Nov;1(6):342-7. doi: 10.1038/nchembio741. Epub 2005 Oct 9.
Kinesin is a stepping motor that successively produces forward and backward 8-nm steps along microtubules. Under physiological conditions, the steps powering kinesin's motility are biased in one direction and drive various biological motile processes. The physical mechanism underlying the unidirectional bias of the kinesin steps is not fully understood. Here we explored the mechanical kinetics and thermodynamics of forward and backward kinesin steps by analyzing their temperature and load dependence. Results show that the frequency asymmetry between forward and backward steps is produced by entropy. Furthermore, the magnitude of the entropic asymmetry is 6 k(B)T, more than three times greater than expected from a current model, in which a mechanical conformational change within the kinesin molecular structure directly biases the kinesin steps forward. We propose that the stepping direction of kinesin is preferably caused by an entropy asymmetry resulting from the compatibility between the kinesin and microtubule interaction based on their polar structures.
驱动蛋白是一种步进马达,它沿着微管依次产生向前和向后8纳米的步移。在生理条件下,驱动驱动蛋白运动的步移在一个方向上存在偏向,并驱动各种生物运动过程。驱动蛋白步移单向偏向的物理机制尚未完全理解。在这里,我们通过分析其对温度和负载的依赖性,探索了驱动蛋白向前和向后步移的机械动力学和热力学。结果表明,向前和向后步移之间的频率不对称是由熵产生的。此外,熵不对称的大小为6k(B)T,比当前模型预期的大三倍多,在当前模型中,驱动蛋白分子结构内的机械构象变化直接使驱动蛋白步移向前偏向。我们提出,驱动蛋白的步移方向优选地由基于其极性结构的驱动蛋白与微管相互作用之间的兼容性所导致的熵不对称引起。