Suppr超能文献

对有尾噬菌体DNA释放的动力学分析揭示了所需的活化能。

A kinetic analysis of DNA ejection from tailed phages revealing the prerequisite activation energy.

作者信息

Raspaud Eric, Forth Thomas, São-José Carlos, Tavares Paulo, de Frutos Marta

机构信息

Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, F-91405 Orsay cedex, France.

出版信息

Biophys J. 2007 Dec 1;93(11):3999-4005. doi: 10.1529/biophysj.107.111435. Epub 2007 Aug 3.

Abstract

All tailed bacteriophages follow the same general scheme of infection: they bind to their specific host receptor and then transfer their genome into the bacterium. DNA translocation is thought to be initiated by the strong pressure due to DNA packing inside the capsid. However, the exact mechanism by which each phage controls its DNA ejection remains unknown. Using light scattering, we analyzed the kinetics of in vitro DNA release from phages SPP1 and lambda (Siphoviridae family) and found a simple exponential decay. The ejection characteristic time was studied as a function of the temperature and found to follow an Arrhenius law, allowing us to determine the activation energy that governs DNA ejection. A value of 25-30 kcal/mol is obtained for SPP1 and lambda, comparable to the one measured in vitro for T5 (Siphoviridae) and in vivo for T7 (Podoviridae). This suggests similar mechanisms of DNA ejection control. In all tailed phages, the opening of the connector-tail channel is needed for DNA release and could constitute the limiting step. The common value of the activation energy likely reflects the existence for all phages of an optimum value, ensuring a compromise between efficient DNA delivery and high stability of the virus.

摘要

所有有尾噬菌体都遵循相同的一般感染模式

它们与特定的宿主受体结合,然后将其基因组转移到细菌中。DNA易位被认为是由衣壳内DNA包装产生的强大压力引发的。然而,每种噬菌体控制其DNA喷射的确切机制仍然未知。我们利用光散射分析了噬菌体SPP1和λ(长尾噬菌体科)体外DNA释放的动力学,发现其呈简单的指数衰减。研究了喷射特征时间与温度的函数关系,发现其遵循阿累尼乌斯定律,这使我们能够确定控制DNA喷射的活化能。SPP1和λ的活化能值为25 - 30千卡/摩尔,与体外测量的T5(长尾噬菌体科)和体内测量的T7(短尾噬菌体科)的值相当。这表明DNA喷射控制机制相似。在所有有尾噬菌体中,连接体 - 尾通道的开放是DNA释放所必需的,并且可能是限制步骤。活化能的共同值可能反映了所有噬菌体都存在一个最佳值,确保在高效DNA传递和病毒高稳定性之间达成妥协。

相似文献

1
A kinetic analysis of DNA ejection from tailed phages revealing the prerequisite activation energy.
Biophys J. 2007 Dec 1;93(11):3999-4005. doi: 10.1529/biophysj.107.111435. Epub 2007 Aug 3.
2
DNA ejection from bacteriophage T5: analysis of the kinetics and energetics.
Biophys J. 2005 Feb;88(2):1364-70. doi: 10.1529/biophysj.104.048785. Epub 2004 Nov 12.
3
Dynamic and static light scattering analysis of DNA ejection from the phage lambda.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011914. doi: 10.1103/PhysRevE.76.011914. Epub 2007 Jul 20.
4
Forces during bacteriophage DNA packaging and ejection.
Biophys J. 2005 Feb;88(2):851-66. doi: 10.1529/biophysj.104.047134. Epub 2004 Nov 19.
5
Effect of spermine and DNase on DNA release from bacteriophage T5.
Eur Phys J E Soft Matter. 2005 Aug;17(4):429-34. doi: 10.1140/epje/i2005-10019-5. Epub 2005 Aug 3.
6
Bacteriophage T5 DNA ejection under pressure.
J Mol Biol. 2008 Dec 19;384(3):730-9. doi: 10.1016/j.jmb.2008.09.035. Epub 2008 Sep 21.
7
DNA packaging and delivery machines in tailed bacteriophages.
Curr Opin Struct Biol. 2007 Apr;17(2):237-43. doi: 10.1016/j.sbi.2007.03.011. Epub 2007 Mar 28.
8
Langevin dynamics simulations of genome packing in bacteriophage.
Biophys J. 2006 Jul 1;91(1):25-41. doi: 10.1529/biophysj.105.073429. Epub 2006 Apr 14.
9
The Bacteriophage Head-to-Tail Interface.
Subcell Biochem. 2018;88:305-328. doi: 10.1007/978-981-10-8456-0_14.
10
Role of osmotic and hydrostatic pressures in bacteriophage genome ejection.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022714. doi: 10.1103/PhysRevE.87.022714. Epub 2013 Feb 20.

引用本文的文献

1
DNA Released by Adeno-Associated Virus Strongly Alters Capsid Aggregation Kinetics in a Physiological Solution.
Biomacromolecules. 2024 May 13;25(5):2890-2901. doi: 10.1021/acs.biomac.4c00027. Epub 2024 Apr 29.
2
An Overview of Diverse Strategies To Inactivate -Targeting Bacteriophages.
EcoSal Plus. 2023 Dec 12;11(1):eesp00192022. doi: 10.1128/ecosalplus.esp-0019-2022. Epub 2023 Jan 18.
3
Time-resolved DNA release from an O-antigen-specific bacteriophage with a contractile tail.
J Biol Chem. 2019 Aug 2;294(31):11751-11761. doi: 10.1074/jbc.RA119.008133. Epub 2019 Jun 12.
4
The mobility of packaged phage genome controls ejection dynamics.
Elife. 2018 Sep 4;7:e37345. doi: 10.7554/eLife.37345.
6
In Vitro Studies of Lipopolysaccharide-Mediated DNA Release of Podovirus HK620.
Viruses. 2018 May 29;10(6):289. doi: 10.3390/v10060289.
7
Influence of Internal DNA Pressure on Stability and Infectivity of Phage λ.
J Mol Biol. 2015 Oct 9;427(20):3189-3200. doi: 10.1016/j.jmb.2015.07.023. Epub 2015 Aug 5.
8
Features of membrane receptors in bacterial multiplication process and necessary conditions for phage infection of bacteria.
Curr Microbiol. 2014 Dec;69(6):858-65. doi: 10.1007/s00284-014-0665-x. Epub 2014 Aug 6.
9
Langevin dynamics simulation of DNA ejection from a phage.
J Biol Phys. 2013 Mar;39(2):229-45. doi: 10.1007/s10867-013-9316-x. Epub 2013 Apr 23.
10
Popping the cork: mechanisms of phage genome ejection.
Nat Rev Microbiol. 2013 Mar;11(3):194-204. doi: 10.1038/nrmicro2988. Epub 2013 Feb 4.

本文引用的文献

1
Structural framework for DNA translocation via the viral portal protein.
EMBO J. 2007 Apr 4;26(7):1984-94. doi: 10.1038/sj.emboj.7601643. Epub 2007 Mar 15.
2
Forces controlling the rate of DNA ejection from phage lambda.
J Mol Biol. 2007 Apr 20;368(1):55-65. doi: 10.1016/j.jmb.2007.01.076. Epub 2007 Feb 6.
3
Structural changes of bacteriophage phi29 upon DNA packaging and release.
EMBO J. 2006 Nov 1;25(21):5229-39. doi: 10.1038/sj.emboj.7601386. Epub 2006 Oct 19.
4
5500 Phages examined in the electron microscope.
Arch Virol. 2007 Feb;152(2):227-43. doi: 10.1007/s00705-006-0849-1. Epub 2006 Oct 19.
5
Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships.
J Mol Biol. 2006 Sep 1;361(5):993-1002. doi: 10.1016/j.jmb.2006.06.081. Epub 2006 Jul 31.
6
The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA.
J Biol Chem. 2006 Apr 28;281(17):11464-70. doi: 10.1074/jbc.M513625200. Epub 2006 Feb 14.
7
Fifty-three years since Hershey and Chase; much ado about pressure but which pressure is it?
Virology. 2006 Jan 5;344(1):221-9. doi: 10.1016/j.virol.2005.09.014.
8
Three-dimensional structure of the bacteriophage P22 tail machine.
EMBO J. 2005 Jun 15;24(12):2087-95. doi: 10.1038/sj.emboj.7600695. Epub 2005 Jun 2.
9
Why enzymes are proficient catalysts: beyond the Pauling paradigm.
Acc Chem Res. 2005 May;38(5):379-85. doi: 10.1021/ar040257s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验