Suppr超能文献

Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress.

作者信息

Turner Mark S, Tan Yu Pei, Giffard Philip M

机构信息

Infectious Diseases Program, Cells and Tissue Domain, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.

出版信息

Appl Environ Microbiol. 2007 Oct;73(19):6144-9. doi: 10.1128/AEM.00413-07. Epub 2007 Aug 3.

Abstract

In Lactococcus lactis, the interactions between oxidative defense, metal metabolism, and respiratory metabolism are not fully understood. To provide an insight into these processes, we isolated and characterized mutants of L. lactis resistant to the oxidizing agent tellurite (TeO(3)(2-)), which generates superoxide radicals intracellularly. A collection of tellurite-resistant mutants was obtained using random transposon mutagenesis of L. lactis. These contained insertions in genes encoding a proton-coupled Mn(2+)/Fe(2+) transport homolog (mntH), the high-affinity phosphate transport system (pstABCDEF), a putative osmoprotectant uptake system (choQ), and a homolog of the oxidative defense regulator spx (trmA). The tellurite-resistant mutants all had better survival than the wild type following aerated growth. The mntH mutant was found to be impaired in Fe(2+) uptake, suggesting that MntH is a Fe(2+) transporter in L. lactis. This mutant is capable of carrying out respiration but does not generate as high a final pH and does not exhibit the long lag phase in the presence of hemin and oxygen that is characteristic of wild-type L. lactis. This study suggests that tellurite-resistant mutants also have increased resistance to oxidative stress and that intracellular Fe(2+) can heighten tellurite and oxygen toxicity.

摘要

相似文献

1
Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress.
Appl Environ Microbiol. 2007 Oct;73(19):6144-9. doi: 10.1128/AEM.00413-07. Epub 2007 Aug 3.
2
Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis.
Mol Microbiol. 2004 Sep;53(5):1331-42. doi: 10.1111/j.1365-2958.2004.04217.x.
3
CcpA regulation of aerobic and respiration growth in Lactococcus lactis.
Mol Microbiol. 2003 Oct;50(1):183-92. doi: 10.1046/j.1365-2958.2003.03700.x.
4
Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis.
Microbiology (Reading). 2009 Jul;155(Pt 7):2274-2281. doi: 10.1099/mic.0.027797-0. Epub 2009 Apr 23.
5
Oxidative stress in Lactococcus lactis.
Genet Mol Res. 2003 Dec 30;2(4):348-59.
6
Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363.
Proteomics. 2007 Jun;7(12):2038-46. doi: 10.1002/pmic.200600773.
7
Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth.
Mol Microbiol. 2008 Mar;67(5):947-57. doi: 10.1111/j.1365-2958.2007.06083.x. Epub 2008 Jan 9.
9
Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
J Appl Microbiol. 2006 Jun;100(6):1364-72. doi: 10.1111/j.1365-2672.2006.02867.x.
10
Lactococcus lactis SpOx spontaneous mutants: a family of oxidative-stress-resistant dairy strains.
Appl Environ Microbiol. 2005 May;71(5):2782-8. doi: 10.1128/AEM.71.5.2782-2788.2005.

引用本文的文献

2
Mechanisms of Acetoin Toxicity and Adaptive Responses in an Acetoin-Producing Species, Lactococcus lactis.
Appl Environ Microbiol. 2021 Nov 24;87(24):e0107921. doi: 10.1128/AEM.01079-21. Epub 2021 Oct 6.
3
Adaptive Evolution of Lactococcus Lactis to Thermal and Oxidative Stress Increases Biomass and Nisin Production.
Appl Biochem Biotechnol. 2021 Nov;193(11):3425-3441. doi: 10.1007/s12010-021-03609-6. Epub 2021 Jul 1.
4
Molecular Mechanism of Nramp-Family Transition Metal Transport.
J Mol Biol. 2021 Aug 6;433(16):166991. doi: 10.1016/j.jmb.2021.166991. Epub 2021 Apr 16.
6
Heme Uptake in Evidenced by a New Energy Coupling Factor (ECF)-Like Transport System.
Appl Environ Microbiol. 2020 Sep 1;86(18). doi: 10.1128/AEM.02847-19.
7
Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species.
Adv Microb Physiol. 2019;75:279-323. doi: 10.1016/bs.ampbs.2019.05.003. Epub 2019 Jul 5.
8
Inactivation of the spxA1 or spxA2 gene of Streptococcus mutans decreases virulence in the rat caries model.
Mol Oral Microbiol. 2017 Apr;32(2):142-153. doi: 10.1111/omi.12160. Epub 2016 May 16.

本文引用的文献

1
SpxB regulates O-acetylation-dependent resistance of Lactococcus lactis peptidoglycan to hydrolysis.
J Biol Chem. 2007 Jul 6;282(27):19342-54. doi: 10.1074/jbc.M611308200. Epub 2007 May 7.
2
Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363.
J Bacteriol. 2007 Apr;189(8):3256-70. doi: 10.1128/JB.01768-06. Epub 2007 Feb 16.
3
Bacterial toxicity of potassium tellurite: unveiling an ancient enigma.
PLoS One. 2007 Feb 14;2(2):e211. doi: 10.1371/journal.pone.0000211.
7
Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis.
J Bacteriol. 2005 Jan;187(2):601-10. doi: 10.1128/JB.187.2.601-610.2005.
8
Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis.
Mol Microbiol. 2004 Sep;53(5):1331-42. doi: 10.1111/j.1365-2958.2004.04217.x.
9
Horizontal gene transfer of "prototype" Nramp in bacteria.
J Mol Evol. 2003 Oct;57(4):363-76. doi: 10.1007/s00239-003-2472-z.
10
Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13603-8. doi: 10.1073/pnas.2235180100. Epub 2003 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验