Yoshioka Masahiko, Scarpetta Silvia, Marinaro Maria
Department of Physics, ER Caianiello, University of Salerno, Baronissi SA, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051917. doi: 10.1103/PhysRevE.75.051917. Epub 2007 May 29.
Incorporating the spike-timing-dependent synaptic plasticity (STDP) into a learning rule, we study spatiotemporal learning in analog neural networks. First, we study learning of a finite number of periodic spatiotemporal patterns by deriving the dynamics of the order parameters. When a pattern is retrieved successfully, the order parameters exhibit periodic oscillation. Analyzing this oscillation of the order parameters, we elucidate the relation of the STDP time window to the properties of the retrieval state; the phase of the Fourier transform of the STDP time window determines the retrieval frequency and the time average of the STDP time window crucially affects the storage capacity. We also evaluate the stability of the order parameter oscillation and identify the retrieval state that is stable in single-pattern learning but unstable in multiple-pattern learning even when the retrieval state is independent of a pattern number. To examine the further applicability of the STDP-based learning rule, we also study learning of nonperiodic spatiotemporal Poisson patterns. Our numerical simulations demonstrate that the Poisson patterns are memorized successfully not only in analog neural networks but also in spiking neural networks.
将依赖于尖峰时间的突触可塑性(STDP)纳入学习规则,我们研究了模拟神经网络中的时空学习。首先,我们通过推导序参量的动力学来研究有限数量的周期性时空模式的学习。当一个模式被成功检索时,序参量会呈现周期性振荡。通过分析序参量的这种振荡,我们阐明了STDP时间窗口与检索状态属性之间的关系;STDP时间窗口的傅里叶变换相位决定了检索频率,而STDP时间窗口的时间平均值对存储容量有至关重要的影响。我们还评估了序参量振荡的稳定性,并确定了在单模式学习中稳定但在多模式学习中不稳定的检索状态,即使检索状态与模式数量无关。为了检验基于STDP的学习规则的进一步适用性,我们还研究了非周期性时空泊松模式的学习。我们的数值模拟表明泊松模式不仅能在模拟神经网络中成功记忆,也能在脉冲神经网络中成功记忆。