Suppr超能文献

用于在脉冲神经元网络中编码时空模式的基于尖峰时间的学习规则。

Spike-timing-dependent learning rule to encode spatiotemporal patterns in a network of spiking neurons.

作者信息

Yoshioka Masahiko

机构信息

Brain Science Institute, RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jan;65(1 Pt 1):011903. doi: 10.1103/PhysRevE.65.011903. Epub 2001 Dec 17.

Abstract

We study associative memory neural networks based on the Hodgkin-Huxley type of spiking neurons. We introduce the spike-timing-dependent learning rule, in which the time window with the negative part as well as the positive part is used to describe the biologically plausible synaptic plasticity. The learning rule is applied to encode a number of periodical spatiotemporal patterns, which are successfully reproduced in the periodical firing pattern of spiking neurons in the process of memory retrieval. The global inhibition is incorporated into the model so as to induce the gamma oscillation. The occurrence of gamma oscillation turns out to give appropriate spike timings for memory retrieval of discrete type of spatiotemporal pattern. The theoretical analysis to elucidate the stationary properties of perfect retrieval state is conducted in the limit of an infinite number of neurons and shows the good agreement with the result of numerical simulations. The result of this analysis indicates that the presence of the negative and positive parts in the form of the time window contributes to reduce the size of crosstalk term, implying that the time window with the negative and positive parts is suitable to encode a number of spatiotemporal patterns. We draw some phase diagrams, in which we find various types of phase transitions with change of the intensity of global inhibition.

摘要

我们研究基于霍奇金 - 赫胥黎型脉冲神经元的联想记忆神经网络。我们引入了依赖于脉冲时间的学习规则,其中具有负部分以及正部分的时间窗口用于描述生物学上合理的突触可塑性。该学习规则被应用于编码许多周期性的时空模式,这些模式在记忆检索过程中在脉冲神经元的周期性放电模式中成功再现。全局抑制被纳入模型以诱导伽马振荡。伽马振荡的出现为离散类型的时空模式的记忆检索提供了合适的脉冲时间。在无限数量神经元的极限情况下进行了阐明完美检索状态的平稳特性的理论分析,结果与数值模拟结果显示出良好的一致性。该分析结果表明,时间窗口形式的负部分和正部分的存在有助于减小串扰项的大小,这意味着具有负部分和正部分的时间窗口适合于编码许多时空模式。我们绘制了一些相图,并在其中发现了随着全局抑制强度变化的各种类型的相变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验