Suppr超能文献

统一进化动力学与网络动力学。

Unifying evolutionary and network dynamics.

作者信息

Swarup Samarth, Gasser Les

机构信息

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun;75(6 Pt 2):066114. doi: 10.1103/PhysRevE.75.066114. Epub 2007 Jun 28.

Abstract

Many important real-world networks manifest small-world properties such as scale-free degree distributions, small diameters, and clustering. The most common model of growth for these networks is preferential attachment, where nodes acquire new links with probability proportional to the number of links they already have. We show that preferential attachment is a special case of the process of molecular evolution. We present a single-parameter model of network growth that unifies varieties of preferential attachment with the quasispecies equation (which models molecular evolution), and also with the Erdos-Rényi random graph model. We suggest some properties of evolutionary models that might be applied to the study of networks. We also derive the form of the degree distribution resulting from our algorithm, and we show through simulations that the process also models aspects of network growth. The unification allows mathematical machinery developed for evolutionary dynamics to be applied in the study of network dynamics, and vice versa.

摘要

许多重要的现实世界网络都呈现出小世界特性,如无标度度分布、小直径和聚类。这些网络最常见的增长模型是偏好依附,即节点获得新链接的概率与其已有链接数量成正比。我们表明,偏好依附是分子进化过程的一种特殊情况。我们提出了一个单参数网络增长模型,该模型将各种偏好依附与准物种方程(用于模拟分子进化)以及厄多斯-雷尼随机图模型统一起来。我们提出了一些可能应用于网络研究的进化模型特性。我们还推导了由我们的算法产生的度分布形式,并通过模拟表明该过程也模拟了网络增长的各个方面。这种统一使得为进化动力学开发的数学工具能够应用于网络动力学研究中,反之亦然。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验