Miyaguchi Tomoshige
Meme Media Laboratory, Hokkaido University, Kita-Ku, Sapporo 060-0813, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun;75(6 Pt 2):066215. doi: 10.1103/PhysRevE.75.066215. Epub 2007 Jun 27.
Chaotic orbits of the mushroom billiards display intermittent behaviors. We investigate statistical properties of this system by constructing an infinite partition on the chaotic part of a Poincaré surface, which illustrates details of chaotic dynamics. Each piece of the infinite partition has a unique escape time from the half disk region, and from this result it is shown that, for fixed values of the system parameters, the escape time distribution obeys a power law 1/t(esc)(3).
蘑菇台球的混沌轨道呈现出间歇性行为。我们通过在庞加莱曲面的混沌部分构建一个无限分割来研究该系统的统计特性,这展示了混沌动力学的细节。无限分割的每一部分从半圆区域都有一个独特的逃逸时间,并且由此结果表明,对于系统参数的固定值,逃逸时间分布服从幂律1/t(esc)(3) 。