Bayer M, Brader J M, Ebert F, Fuchs M, Lange E, Maret G, Schilling R, Sperl M, Wittmer J P
Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011508. doi: 10.1103/PhysRevE.76.011508. Epub 2007 Jul 20.
The question of the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d dependence of the memory functional of mode coupling for one-component systems. Applied to two dimensions we solve the MCT equations numerically for monodisperse hard disks. A dynamic glass transition is found at a critical packing fraction phi(c)d=2 approximately equal 0.697 which is above phi(c)d=3 approximately equal 0.516 by about 35%. Phi(c)d scales approximately with phi(rcp)d, the value for random close packing, at least for d=2, 3. Quantities characterizing the local, cooperative "cage motion" do not differ much for d=2 and d=3, and we, e.g., find the Lindemann criterion for the localization length at the glass transition. The final relaxation obeys the superposition principle, collapsing remarkably well onto a Kohlrausch law. The d=2 MCT results are in qualitative agreement with existing results from Monte Carlo and molecular dynamics simulations. The mean-squared displacements measured experimentally for a quasi-two-dimensional binary system of dipolar hard spheres can be described satisfactorily by MCT for monodisperse hard disks over four decades in time provided the experimental control parameter Gamma (which measures the strength of dipolar interactions) and the packing fraction phi are properly related to each other.
利用模式耦合理论(MCT)研究了二维结构玻璃转变的存在问题。我们确定了单组分系统中模式耦合记忆泛函的明确维度依赖性。应用于二维时,我们对单分散硬磁盘数值求解了MCT方程。发现动态玻璃转变发生在临界堆积分数$\phi_{c,d=2}\approx0.697$处,该值比$\phi_{c,d=3}\approx0.516$高约35%。$\phi_{c,d}$至少对于$d=2$、$3$,大致与随机密堆积值$\phi_{rcp,d}$成比例。表征局部协同“笼中运动”的量在$d=2$和$d=3$时差异不大,例如,我们找到了玻璃转变处局域长度的林德曼判据。最终弛豫服从叠加原理,能很好地塌缩到科尔劳施定律上。二维MCT结果与蒙特卡罗和分子动力学模拟的现有结果在定性上一致。对于偶极硬球的准二维二元系统实验测量的均方位移,只要实验控制参数$\Gamma$(衡量偶极相互作用强度)和堆积分数$\phi$相互适当地关联,在四个数量级的时间范围内,单分散硬磁盘的MCT可以令人满意地描述。