Schmid Bernhard, Schilling Rolf
Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041502. doi: 10.1103/PhysRevE.81.041502. Epub 2010 Apr 9.
We have investigated analytically and numerically the liquid-glass transition of hard spheres for dimensions d-->infinity in the framework of mode-coupling theory. The numerical results for the critical collective and self-nonergodicity parameters fc(k;d) and fc(s)(k;d) exhibit non-Gaussian k dependence even up to d=800.fc(s)(k;d) and fc(k;d) differ for k approximately d1/2, but become identical on a scale k approximately d, which is proven analytically. The critical packing fraction phic(d) approximately d(2)2(-d) is above the corresponding Kauzmann packing fraction phiK(d) derived by a small cage expansion. Its quadratic pre-exponential factor is different from the linear one found earlier. The numerical values for the exponent parameter and therefore the critical exponents a and b depend on d, even for the largest values of d.
我们在模式耦合理论框架下,对维度(d\to\infty)时硬球的液-玻璃转变进行了分析和数值研究。临界集体和自非遍历性参数(f_c(k;d))和(f_c(s)(k;d))的数值结果显示,即使在(d = 800)时,(k)的依赖性也呈现非高斯性。对于(k\approx d^{1/2}),(f_c(s)(k;d))和(f_c(k;d))不同,但在(k\approx d)的尺度上变得相同,这一点已得到分析证明。临界堆积分数(\phi_c(d)\approx d^2 2^{-d})高于通过小笼子展开得到的相应考兹曼堆积分数(\phi_K(d))。其二次指数前因子与先前发现的线性因子不同。指数参数以及因此的临界指数(a)和(b)的数值取决于(d),即使对于最大的(d)值也是如此。