Shreim Amer, Grassberger Peter, Nadler Walter, Samuelsson Björn, Socolar Joshua E S, Paczuski Maya
Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada.
Phys Rev Lett. 2007 May 11;98(19):198701. doi: 10.1103/PhysRevLett.98.198701. Epub 2007 May 8.
We study networks representing the dynamics of elementary 1D cellular automata (CA) on finite lattices. We analyze scaling behaviors of both local and global network properties as a function of system size. The scaling of the largest node in-degree is obtained analytically for a variety of CA including rules 22, 54, and 110. We further define the path diversity as a global network measure. The coappearance of nontrivial scaling in both the hub size and the path diversity separates simple dynamics from the more complex behaviors typically found in Wolfram's class IV and some class III CA.
我们研究了表示有限晶格上基本一维元胞自动机(CA)动力学的网络。我们分析了局部和全局网络属性作为系统大小函数的标度行为。对于包括规则22、54和110在内的多种CA,通过解析得到了最大节点入度的标度。我们进一步将路径多样性定义为一种全局网络度量。中心节点大小和路径多样性中出现的非平凡标度的共同出现,将简单动力学与通常在沃尔夫勒姆的IV类和一些III类CA中发现的更复杂行为区分开来。