Suppr超能文献

Koopman spectral analysis of elementary cellular automata.

作者信息

Taga Keisuke, Kato Yuzuru, Kawahara Yoshinobu, Yamazaki Yoshihiro, Nakao Hiroya

机构信息

Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.

Department of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan.

出版信息

Chaos. 2021 Oct;31(10):103121. doi: 10.1063/5.0059202.

Abstract

We perform a Koopman spectral analysis of elementary cellular automata (ECA). By lifting the system dynamics using a one-hot representation of the system state, we derive a matrix representation of the Koopman operator as the transpose of the adjacency matrix of the state-transition network. The Koopman eigenvalues are either zero or on the unit circle in the complex plane, and the associated Koopman eigenfunctions can be explicitly constructed. From the Koopman eigenvalues, we can judge the reversibility, determine the number of connected components in the state-transition network, evaluate the period of asymptotic orbits, and derive the conserved quantities for each system. We numerically calculate the Koopman eigenvalues of all rules of ECA on a one-dimensional lattice of 13 cells with periodic boundary conditions. It is shown that the spectral properties of the Koopman operator reflect Wolfram's classification of ECA.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验