Suppr超能文献

细胞自动机的粗粒化、涌现及复杂系统的可预测性。

Coarse-graining of cellular automata, emergence, and the predictability of complex systems.

作者信息

Israeli Navot, Goldenfeld Nigel

机构信息

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 2):026203. doi: 10.1103/PhysRevE.73.026203. Epub 2006 Feb 6.

Abstract

We study the predictability of emergent phenomena in complex systems. Using nearest-neighbor, one-dimensional cellular automata (CA) as an example, we show how to construct local coarse-grained descriptions of CA in all classes of Wolfram's classification. The resulting coarse-grained CA that we construct are capable of emulating the large-scale behavior of the original systems without accounting for small-scale details. Several CA that can be coarse-grained by this construction are known to be universal Turing machines; they can emulate any CA or other computing devices and are therefore undecidable. We thus show that because in practice one only seeks coarse-grained information, complex physical systems can be predictable and even decidable at some level of description. The renormalization group flows that we construct induce a hierarchy of CA rules. This hierarchy agrees well with apparent rule complexity and is therefore a good candidate for a complexity measure and a classification method. Finally we argue that the large-scale dynamics of CA can be very simple, at least when measured by the Kolmogorov complexity of the large-scale update rule, and moreover exhibits a novel scaling law. We show that because of this large-scale simplicity, the probability of finding a coarse-grained description of CA approaches unity as one goes to increasingly coarser scales. We interpret this large-scale simplicity as a pattern formation mechanism in which large-scale patterns are forced upon the system by the simplicity of the rules that govern the large-scale dynamics.

摘要

我们研究复杂系统中涌现现象的可预测性。以最近邻一维细胞自动机(CA)为例,我们展示了如何在沃尔夫勒姆分类的所有类别中构建CA的局部粗粒度描述。我们构建的所得粗粒度CA能够模拟原始系统的大规模行为,而无需考虑小规模细节。已知有几种可以通过这种构建进行粗粒度化的CA是通用图灵机;它们可以模拟任何CA或其他计算设备,因此是不可判定的。因此我们表明,由于在实践中人们只寻求粗粒度信息,复杂物理系统在某些描述层面上可以是可预测的,甚至是可判定的。我们构建的重整化群流诱导了CA规则的层次结构。这个层次结构与明显的规则复杂性非常吻合,因此是复杂性度量和分类方法的一个很好的候选者。最后我们认为,CA的大规模动力学可以非常简单,至少当用大规模更新规则的柯尔莫哥洛夫复杂性来衡量时是这样,而且还呈现出一种新颖的标度律。我们表明,由于这种大规模的简单性,随着尺度变得越来越粗,找到CA粗粒度描述的概率趋近于1。我们将这种大规模的简单性解释为一种模式形成机制,在这种机制中,大规模模式是由支配大规模动力学的规则的简单性强加给系统的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验