Somma R D, Batista C D, Ortiz G
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Phys Rev Lett. 2007 Jul 20;99(3):030603. doi: 10.1103/PhysRevLett.99.030603.
We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.
我们提出了一种研究d维经典系统热力学性质的新方法,即将该问题简化为计算d维量子模型的基态性质。这种经典到量子的映射使我们能够通过在一个通用框架下统一标准优化方法来扩展其范围。量子退火方法自然地扩展到了有限温度下对经典系统的模拟。我们利用量子力学的绝热定理推导出确保收敛到最优热力学状态的速率。对于模拟退火和量子退火,我们分别得到了温度T(t)和磁场γ(t)的渐近速率,近似为T(t)≈(pN)/(k(B)logt)和γ(t)≈(Nt)^(-c/N)。我们还讨论了其他退火策略。