Suppr超能文献

花的起始与花序结构:比较视角

Floral initiation and inflorescence architecture: a comparative view.

作者信息

Benlloch Reyes, Berbel Ana, Serrano-Mislata Antonio, Madueño Francisco

机构信息

Laboratoire iRTSV/PCV, UMR CEA-CNRS 5168 - INRA1200 - UJF CEA, 17 rue des Martyrs, bât, C2 - 38054 [corrected]

出版信息

Ann Bot. 2007 Sep;100(3):659-76. doi: 10.1093/aob/mcm146. Epub 2007 Aug 6.

Abstract

BACKGROUND

A huge variety of plant forms can be found in nature. This is particularly noticeable for inflorescences, the region of the plant that contains the flowers. The architecture of the inflorescence depends on its branching pattern and on the relative position where flowers are formed. In model species such as Arabidopsis thaliana or Antirrhinum majus the key genes that regulate the initiation of flowers have been studied in detail and much is known about how they work. Studies being carried out in other species of higher plants indicate that the homologues of these genes are also key regulators of the development of their reproductive structures. Further, changes in these gene expression patterns and/or function play a crucial role in the generation of different plant architectures.

SCOPE

In this review we aim to present a summarized view on what is known about floral initiation genes in different plants, particularly dicotyledonous species, and aim to emphasize their contribution to plant architecture.

摘要

背景

自然界中可发现多种多样的植物形态。这在花序中尤为明显,花序是植物中包含花朵的区域。花序的结构取决于其分支模式以及花朵形成的相对位置。在拟南芥或金鱼草等模式物种中,调控花起始的关键基因已得到详细研究,并且对它们的作用方式也有很多了解。在其他高等植物物种中进行的研究表明,这些基因的同源物也是其生殖结构发育的关键调节因子。此外,这些基因表达模式和/或功能的变化在不同植物结构的形成中起着至关重要的作用。

范围

在本综述中,我们旨在对不同植物,特别是双子叶植物中花起始基因的已知情况进行总结,并强调它们对植物结构的贡献。

相似文献

1
Floral initiation and inflorescence architecture: a comparative view.
Ann Bot. 2007 Sep;100(3):659-76. doi: 10.1093/aob/mcm146. Epub 2007 Aug 6.
2
New insights into the regulation of inflorescence architecture.
Trends Plant Sci. 2014 Mar;19(3):158-65. doi: 10.1016/j.tplants.2013.11.001. Epub 2013 Dec 3.
4
Regulation of inflorescence architecture by cytokinins.
Front Plant Sci. 2014 Nov 24;5:669. doi: 10.3389/fpls.2014.00669. eCollection 2014.
5
Genes controlling plant architecture.
Curr Opin Biotechnol. 2006 Apr;17(2):123-9. doi: 10.1016/j.copbio.2006.02.004. Epub 2006 Feb 28.
6
Mechanisms and function of flower and inflorescence reversion.
J Exp Bot. 2005 Oct;56(420):2587-99. doi: 10.1093/jxb/eri254. Epub 2005 Aug 30.
8
Variations on a theme: changes in the floral ABCs in angiosperms.
Semin Cell Dev Biol. 2010 Feb;21(1):100-7. doi: 10.1016/j.semcdb.2009.11.002. Epub 2009 Nov 22.
9
Floral zygomorphy, the recurring evolution of a successful trait.
Bioessays. 2004 Nov;26(11):1175-84. doi: 10.1002/bies.20119.
10
Influence of inflorescence size on sexual expression and female reproductive success in a monoecious species.
Plant Biol (Stuttg). 2011 Jan;13 Suppl 1:78-85. doi: 10.1111/j.1438-8677.2009.00292.x.

引用本文的文献

1
Molecular mechanisms underlying the early steps of floral initiation in seasonal flowering genotypes of cultivated strawberry.
Front Plant Sci. 2025 Jun 19;16:1563658. doi: 10.3389/fpls.2025.1563658. eCollection 2025.
2
The PEBP genes FLOWERING LOCUS T and TERMINAL FLOWER 1 modulate seed dormancy and size.
J Exp Bot. 2025 Feb 25;76(4):1049-1067. doi: 10.1093/jxb/erae466.
3
 (Poaceae), a new species from the north-western Qinghai-Tibetan Plateau, China.
PhytoKeys. 2024 Nov 12;249:51-73. doi: 10.3897/phytokeys.249.127632. eCollection 2024.
4
Secretory pedicels? Development, morphology, and histochemistry of articulated pedicels in Neotropical Malveae (Malvaceae).
J Plant Res. 2025 Jan;138(1):65-76. doi: 10.1007/s10265-024-01592-7. Epub 2024 Nov 13.
5
Nectar and pollen in Acer trees can contribute to improvement of food resources for pollinators.
Sci Rep. 2024 Nov 12;14(1):27705. doi: 10.1038/s41598-024-78355-w.
6
Evolution and development of complex floral displays.
Development. 2024 Nov 1;151(21). doi: 10.1242/dev.203027. Epub 2024 Nov 5.
7
Data-centric AI approach for automated wildflower monitoring.
PLoS One. 2024 Sep 9;19(9):e0302958. doi: 10.1371/journal.pone.0302958. eCollection 2024.
8
BdRCN4, a Brachypodium distachyon TFL1 homologue, is involved in regulation of apical meristem fate.
Plant Mol Biol. 2024 Jun 28;114(4):81. doi: 10.1007/s11103-024-01467-4.
10
A spatial transcriptome map of the developing maize ear.
Nat Plants. 2024 May;10(5):815-827. doi: 10.1038/s41477-024-01683-2. Epub 2024 May 14.

本文引用的文献

1
Plant reproductive genomics at the Plant and Animal Genome Conference.
Comp Funct Genomics. 2005;6(3):159-69. doi: 10.1002/cfg.469.
2
Evolution and development of inflorescence architectures.
Science. 2007 Jun 8;316(5830):1452-6. doi: 10.1126/science.1140429. Epub 2007 May 24.
3
The FT/TFL1 gene family in grapevine.
Plant Mol Biol. 2007 Mar;63(5):637-50. doi: 10.1007/s11103-006-9113-z. Epub 2006 Dec 10.
4
Floral displays: genetic control of grass inflorescences.
Curr Opin Plant Biol. 2007 Feb;10(1):26-31. doi: 10.1016/j.pbi.2006.11.009. Epub 2006 Nov 30.
6
Evolutionary divergence of LFY function in the mustards Arabidopsis thaliana and Leavenworthia crassa.
Plant Mol Biol. 2006 Sep;62(1-2):279-89. doi: 10.1007/s11103-006-9020-3. Epub 2006 Aug 17.
7
How floral meristems are built.
Plant Mol Biol. 2006 Apr;60(6):855-70. doi: 10.1007/s11103-006-0013-z.
8
Genetic and genomic analysis of legume flowers and seeds.
Curr Opin Plant Biol. 2006 Apr;9(2):133-41. doi: 10.1016/j.pbi.2006.01.014. Epub 2006 Feb 15.
9
A putative CENTRORADIALIS/TERMINAL FLOWER 1-like gene, Ljcen1, plays a role in phase transition in Lotus japonicus.
J Plant Physiol. 2006 Mar;163(4):436-44. doi: 10.1016/j.jplph.2005.04.037. Epub 2005 Aug 26.
10
A divergent external loop confers antagonistic activity on floral regulators FT and TFL1.
EMBO J. 2006 Feb 8;25(3):605-14. doi: 10.1038/sj.emboj.7600950. Epub 2006 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验