Suppr超能文献

模型质量评估类别中的预测评估。

Assessment of predictions in the model quality assessment category.

作者信息

Cozzetto Domenico, Kryshtafovych Andriy, Ceriani Michele, Tramontano Anna

机构信息

Department of Biochemical Sciences, University of Rome La Sapienza, P. le A. Moro, 00185 Rome, Italy.

出版信息

Proteins. 2007;69 Suppl 8:175-83. doi: 10.1002/prot.21669.

Abstract

The article presents our evaluation of the predictions submitted to the model quality assessment (QA) category in CASP7. In this newly introduced category, predictors were asked to provide quality estimates for protein structure models. The QA category uses the automatically produced models that are traditionally distributed to CASP participants as input for predictions. Predictors were asked to provide an index of the quality of these individual models (QM1) as well as an index for the expected correctness of each of their residues (QM2). We computed the correlation between the observed and predicted quality of the models and of the individual residues achieved by the participating groups and evaluated the statistical significance of the differences. We also compared the results with those obtained by a "naïve predictor" that assigns a quality score related to how close the model is to the structure of the most similar protein of known structure. The aims of a method for assessing the overall quality of a model can be twofold: selecting the best (or one of the best) model(s) among a set of plausible choices, or assigning a nonrelative quality value to an individual model. The applications of the two strategies are different, albeit equally important. Our assessment of the QA category demonstrates that methods for addressing the first task effectively do exist, while there is room for improvement as far as the second aspect is concerned. Notwithstanding the limited number of groups submitting predictions for residue-level accuracy, our data demonstrate that a respectable accuracy in this task can be achieved by methods relying on the comparison of different models for the same target.

摘要

本文展示了我们对提交至CASP7模型质量评估(QA)类别的预测结果的评估。在这个新引入的类别中,要求预测者为蛋白质结构模型提供质量估计。QA类别使用传统上作为预测输入分发给CASP参与者的自动生成模型。要求预测者提供这些单个模型的质量指数(QM1)以及每个残基预期正确性的指数(QM2)。我们计算了参与小组在模型和单个残基的观察质量与预测质量之间的相关性,并评估了差异的统计显著性。我们还将结果与通过“简单预测器”获得的结果进行了比较,该预测器根据模型与已知结构的最相似蛋白质结构的接近程度分配质量分数。评估模型整体质量的方法的目的可以有两个:在一组合理的选择中选择最佳(或最佳之一)模型,或者为单个模型分配一个非相对质量值。这两种策略的应用不同,尽管同样重要。我们对QA类别的评估表明,确实存在有效解决第一个任务的方法,而就第二个方面而言仍有改进空间。尽管提交残基水平准确性预测的小组数量有限,但我们的数据表明,依靠对同一目标的不同模型进行比较的方法可以在这项任务中取得可观的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验