Suppr超能文献

评估域边界预测和 CASP8 中分子内接触的预测。

Assessment of domain boundary predictions and the prediction of intramolecular contacts in CASP8.

机构信息

Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.

出版信息

Proteins. 2009;77 Suppl 9:196-209. doi: 10.1002/prot.22554.

Abstract

This article details the assessment process and evaluation results for two categories in the 8th Critical Assessment of Protein Structure Prediction experiment (CASP8). The domain prediction category was evaluated with a range of scores including the Normalized Domain Overlap score and a domain boundary distance measure. Residue-residue contact predictions were evaluated with standard CASP measures, prediction accuracy, and Xd. In the domain boundary prediction category, prediction methods still make reliable predictions for targets that have structural templates, but continue to struggle to make good predictions for the few ab initio targets in CASP. There was little indication of improvement in the domain prediction category. The contact prediction category demonstrated that there was renewed interest among predictors and despite the small sample size the results suggested that there had been an increase in prediction accuracy. In contrast to CASP7 contact specialists predicted contacts more accurately than the majority of tertiary structure predictors. Despite this small success, the lack of free modeling targets makes it unlikely that either category will be included in their present form in CASP9.

摘要

本文详细介绍了第八届蛋白质结构预测关键评估实验(CASP8)中两个类别的评估过程和评估结果。域预测类别使用多种评分进行评估,包括归一化域重叠评分和域边界距离度量。残基-残基接触预测使用标准的 CASP 度量、预测准确性和 Xd 进行评估。在域边界预测类别中,预测方法仍然可以为具有结构模板的目标做出可靠的预测,但对于 CASP 中少数从头开始的目标,仍然难以做出良好的预测。在域预测类别中几乎没有改进的迹象。接触预测类别表明,预测者重新产生了兴趣,尽管样本量很小,但结果表明预测准确性有所提高。与 CASP7 接触专家相比,大多数三级结构预测者更准确地预测了接触。尽管取得了这一小部分成功,但缺乏免费建模目标使得这两个类别都不太可能以其目前的形式包含在 CASP9 中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验