Wang Jinku, Wang Moran, Li Zhixin
School of Aerospace, Tsinghua University, Beijing 100084, PR China.
J Colloid Interface Sci. 2006 Apr 15;296(2):729-36. doi: 10.1016/j.jcis.2005.09.042. Epub 2005 Oct 13.
This paper presents the numerical results of electro-osmotic flows in micro- and nanofluidics using a lattice Poisson-Boltzmann method (LPBM) which combines a potential evolution method on discrete lattices to solve the nonlinear Poisson equation (lattice Poisson method) with a density evolution method on discrete lattices to solve the Boltzmann-BGK equation (lattice Boltzmann method). In an electrically driven osmotic flow field, the flow velocity increases with both the external electrical field strength and the surface zeta potential for flows in a homogeneous channel. However, for a given electrical field strength and zeta potential, electrically driven flows have an optimal ionic concentration and an optimum width that maximize the flow velocity. For pressure-driven flows, the electro-viscosity effect increases with the surface zeta potential, but has an ionic concentration that yields the largest electro-viscosity effect. The zeta potential arrangement has little effect on the electro-viscosity for heterogeneous channels. For flows driven by both an electrical force and a pressure gradient, various zeta potential arrangements were considered for maximize the mixing enhancement with a less energy dissipation.
本文展示了使用格子泊松-玻尔兹曼方法(LPBM)对微纳流体中电渗流进行数值模拟的结果。该方法将离散格子上求解非线性泊松方程的势演化方法(格子泊松方法)与离散格子上求解玻尔兹曼- BGK方程的密度演化方法(格子玻尔兹曼方法)相结合。在电驱动渗透流场中,对于均匀通道中的流动,流速随外部电场强度和表面zeta电位的增加而增大。然而,对于给定的电场强度和zeta电位,电驱动流存在一个使流速最大化的最佳离子浓度和最佳宽度。对于压力驱动流,电粘性效应随表面zeta电位的增加而增大,但存在一个产生最大电粘性效应的离子浓度。zeta电位排列对非均匀通道的电粘性影响很小。对于由电力和压力梯度共同驱动的流动,考虑了各种zeta电位排列,以在能量耗散较小的情况下实现最大程度的混合增强。