Suppr超能文献

用生物乙醇推动工业生物技术发展。

Fueling industrial biotechnology growth with bioethanol.

作者信息

Otero José Manuel, Panagiotou Gianni, Olsson Lisbeth

机构信息

Center for Microbial Biotechnology, BioCentrum, Technical University of Denmark, BioCentrum-DTU, 2800, Kgs. Lyngby, Denmark.

出版信息

Adv Biochem Eng Biotechnol. 2007;108:1-40. doi: 10.1007/10_2007_071.

Abstract

Industrial biotechnology is the conversion of biomass via biocatalysis, microbial fermentation, or cell culture to produce chemicals, materials, and/or energy. Industrial biotechnology processes aim to be cost-competitive, environmentally favorable, and self-sustaining compared to their petrochemical equivalents. Common to all processes for the production of energy, commodity, added value, or fine chemicals is that raw materials comprise the most significant cost fraction, particularly as operating efficiencies increase through practice and improving technologies. Today, crude petroleum represents the dominant raw material for the energy and chemical sectors worldwide. Within the last 5 years petroleum prices, stability, and supply have increased, decreased, and been threatened, respectively, driving a renewed interest across academic, government, and corporate centers to utilize biomass as an alternative raw material. Specifically, bio-based ethanol as an alternative biofuel has emerged as the single largest biotechnology commodity, with close to 46 billion L produced worldwide in 2005. Bioethanol is a leading example of how systems biology tools have significantly enhanced metabolic engineering, inverse metabolic engineering, and protein and enzyme engineering strategies. This enhancement stems from method development for measurement, analysis, and data integration of functional genomics, including the transcriptome, proteome, metabolome, and fluxome. This review will show that future industrial biotechnology process development will benefit tremendously from the precedent set by bioethanol - that enabling technologies (e.g., systems biology tools) coupled with favorable economic and socio-political driving forces do yield profitable, sustainable, and environmentally responsible processes. Biofuel will continue to be the keystone of any industrial biotechnology-based economy whereby biorefineries leverage common raw materials and unit operations to integrate diverse processes to produce demand-driven product portfolios.

摘要

工业生物技术是指通过生物催化、微生物发酵或细胞培养将生物质转化为化学品、材料和/或能源。与石化同类产品相比,工业生物技术工艺旨在实现成本竞争力、环境友好性和自我维持性。生产能源、大宗商品、附加值产品或精细化学品的所有工艺的共同之处在于,原材料构成了最大的成本部分,特别是随着实践和技术的改进,运营效率提高。如今,原油是全球能源和化工行业的主要原材料。在过去5年中,石油价格、稳定性和供应分别出现了上涨、下降和受到威胁的情况,这促使学术界、政府和企业界重新关注利用生物质作为替代原材料。具体而言,生物基乙醇作为一种替代生物燃料已成为最大的单一生物技术商品,2005年全球产量接近460亿升。生物乙醇是系统生物学工具如何显著增强代谢工程、逆向代谢工程以及蛋白质和酶工程策略的一个主要例子。这种增强源于功能基因组学测量、分析和数据整合的方法开发,包括转录组、蛋白质组、代谢组和通量组。本综述将表明,未来工业生物技术工艺的开发将极大地受益于生物乙醇树立的先例——即使能技术(如系统生物学工具)与有利的经济和社会政治驱动力相结合,确实能产生盈利、可持续且对环境负责的工艺。生物燃料将继续成为任何基于工业生物技术的经济的基石,生物精炼厂利用常见的原材料和单元操作来整合不同的工艺,以生产需求驱动的产品组合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验