Suppr超能文献

工业酿酒酵母系统生物学使新型琥珀酸细胞工厂成为可能。

Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.

机构信息

Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.

出版信息

PLoS One. 2013;8(1):e54144. doi: 10.1371/journal.pone.0054144. Epub 2013 Jan 21.

Abstract

Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the α-keto-glutarate dehydrogenase catalyzed conversion of α-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2(nd)-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we demonstrate how systems biology tools coupled with directed evolution and selection allows non-intuitive, rapid and substantial re-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals.

摘要

酿酒酵母是研究最为透彻的真核生物,也是最大的工业生物技术产品(生物乙醇)的首选微生物细胞工厂,同时也是一种强大的、商业上兼容的支架,可以用于多样化的化学物质生产。琥珀酸是一种备受追捧的高附加值化学品,酿酒酵母本身并不具备生产和积累琥珀酸的先天倾向。通过使用进化规划方法对酿酒酵母的基因组规模代谢网络进行重构,实现了基于计算机的基因缺失预测,从而将生物量和琥珀酸的生产进行了偶联。甘氨酸和丝氨酸都是生物量形成所必需的基本氨基酸,它们分别由糖酵解和三羧酸循环中间体形成。琥珀酸的形成是由异柠檬酸裂解酶催化异柠檬酸转化的结果,也是由α-酮戊二酸脱氢酶催化α-酮戊二酸转化的结果。琥珀酸随后被琥珀酸脱氢酶复合物消耗掉。确定的代谢工程策略包括删除主要的琥珀酸消耗反应 Sdh3p,并通过删除 3-磷酸甘油酸脱氢酶 Ser3p/Ser33p 中断来自糖酵解的丝氨酸。针对这些靶点,构建了一个多基因缺失菌株,并通过选择进行定向进化,以鉴定出一种产生琥珀酸的突变体。对代谢工程菌株的生理特性进行了表征,并对转录组数据进行了综合数据分析,以确定第二轮代谢工程靶点。结果表明,该菌株的琥珀酸产量提高了 30 倍,对生物量的琥珀酸产率提高了 43 倍,与参考菌株相比,比生长速率仅下降了 2.8 倍。无论是对琥珀酸产生或消耗途径进行过表达或中断的直观遗传靶点,都不会导致琥珀酸产量的增加。相反,我们展示了如何将系统生物学工具与定向进化和选择相结合,快速、大幅度地改变酿酒酵母中的碳通量,从而证明了这是一种具有吸引力的细胞工厂,可以用于生产不同的平台化学品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64ac/3549990/dbc2fd44e77e/pone.0054144.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验