Suppr超能文献

铝纳米结构薄膜作为用于增强紫外-蓝光光谱区域荧光的基底。

Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region.

作者信息

Ray Krishanu, Chowdhury Mustafa H, Lakowicz Joseph R

机构信息

Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

出版信息

Anal Chem. 2007 Sep 1;79(17):6480-7. doi: 10.1021/ac071363l. Epub 2007 Aug 8.

Abstract

Particulate aluminum films of varied thicknesses were deposited on quartz substrates by thermal evaporation. These nanostructured substrates were characterized by scanning electron microscopy (SEM). With the increase of aluminum thickness, the films progress from articulate toward smooth surfaces as observed by SEM images. To date, metal-enhanced fluorescence (MEF) has primarily been observed in the visible - NIR wavelength region using silver or gold island films or roughened surfaces. We now show that fluorescence could also be enhanced in the ultraviolet-blue region of the spectrum using nanostructured aluminum films. Two probes, one in the ultraviolet and another one in the blue spectral region, have been chosen for the present study. We observed increased emission, decrease in fluorescence lifetime, and increase in photostability of a DNA base analogue 2-aminopurine and a coumarin derivative (7-HC) in 10-nm spin-casted poly(vinyl alcohol) film on Al nanostructured surfaces. The fluorescence enhancement factor depends on the thickness of the Al films as the size of the nanostructures formed varies with Al thickness. Both probes showed increased photostability near aluminum nanostructured substrates, which is consistent with the shorter lifetime. Our preliminary studies indicate that Al nanostructured substrates can potentially find widespread use in MEF applications particularly in the UV-blue spectral regime. Furthermore, these Al nanostructured substrates are very stable in buffers that contain chloride salts compared to usual silver colloid-based substrates for MEF, thus furthering the usefulness of these Al-based substrates in many biological assays where high concentration of salts are required. Finite-Difference Time-Domain calculations were also employed to study the enhanced near-fields induced around aluminum nanoparticles by a radiating fluorophore, and the effect of such enhanced fields on the fluorescence enhancement observed was discussed.

摘要

通过热蒸发将不同厚度的颗粒状铝膜沉积在石英衬底上。这些纳米结构的衬底通过扫描电子显微镜(SEM)进行表征。从SEM图像可以观察到,随着铝厚度的增加,薄膜表面从有节理的逐渐变为光滑的。迄今为止,金属增强荧光(MEF)主要是在可见光-近红外波长区域使用银或金岛膜或粗糙表面观察到的。我们现在表明,使用纳米结构的铝膜在光谱的紫外-蓝光区域也可以增强荧光。本研究选择了两种探针,一种在紫外区域,另一种在蓝光光谱区域。我们观察到在铝纳米结构表面上10纳米旋涂的聚乙烯醇薄膜中,DNA碱基类似物2-氨基嘌呤和香豆素衍生物(7-HC)的发射增加、荧光寿命缩短以及光稳定性增强。荧光增强因子取决于铝膜的厚度,因为形成的纳米结构的尺寸随铝厚度而变化。两种探针在铝纳米结构衬底附近都表现出光稳定性增强,这与较短的寿命一致。我们的初步研究表明,铝纳米结构衬底在MEF应用中可能会有广泛的用途,特别是在紫外-蓝光光谱区域。此外,与用于MEF的常用银胶体基衬底相比,这些铝纳米结构衬底在含有氯盐的缓冲液中非常稳定,从而进一步提高了这些铝基衬底在许多需要高浓度盐的生物测定中的实用性。还采用了时域有限差分计算来研究由辐射荧光团在铝纳米颗粒周围诱导的增强近场,并讨论了这种增强场对观察到的荧光增强的影响。

相似文献

1
Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region.
Anal Chem. 2007 Sep 1;79(17):6480-7. doi: 10.1021/ac071363l. Epub 2007 Aug 8.
2
Use of aluminum films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region.
Proc SPIE Int Soc Opt Eng. 2008 Feb 1;6869(68690E):nihpa120419. doi: 10.1117/12.760724.
3
Metal-enhanced Intrinsic Fluorescence of Proteins on Silver Nanostructured Surfaces towards Label-Free Detection.
J Phys Chem C Nanomater Interfaces. 2008;112(46):17957-17963. doi: 10.1021/jp807025n.
5
Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films.
J Phys Chem C Nanomater Interfaces. 2008 Nov 27;112(47):18368-18375. doi: 10.1021/jp806790u.
6
Enhanced fluorescence of proteins and label-free bioassays using aluminum nanostructures.
Anal Chem. 2009 Aug 1;81(15):6049-54. doi: 10.1021/ac900263k.
7
Ultraviolet surface plasmon-coupled emission using thin aluminum films.
Anal Chem. 2004 Jul 15;76(14):4076-81. doi: 10.1021/ac040004c.
8
Distance-Dependent Metal-Enhanced Intrinsic Fluorescence of Proteins Using Polyelectrolyte Layer-by-Layer Assembly and Aluminum Nanoparticles.
J Phys Chem C Nanomater Interfaces. 2012 May 17;116(19):10766-10773. doi: 10.1021/jp2122714. Epub 2012 Apr 23.
10
Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles.
J Fluoresc. 2007 Jul;17(4):377-82. doi: 10.1007/s10895-007-0204-2. Epub 2007 Jun 5.

引用本文的文献

3
Rapid, microwave-assisted deposition of anisotropic silver nanostructures on various substrates.
RSC Adv. 2024 Jul 29;14(33):23638-23644. doi: 10.1039/d4ra03132f. eCollection 2024 Jul 26.
4
Detecting and differentiating neurotransmitters using ultraviolet plasmonic engineered native fluorescence.
RSC Adv. 2023 Nov 7;13(46):32582-32588. doi: 10.1039/d3ra05405e. eCollection 2023 Oct 31.
5
One Stone, Three Birds: Multifunctional Nanodots as "Pilot Light" for Guiding Surgery, Enhanced Radiotherapy, and Brachytherapy of Tumors.
ACS Cent Sci. 2023 Oct 17;9(10):1976-1988. doi: 10.1021/acscentsci.3c00994. eCollection 2023 Oct 25.
6
Plasmonic Fluorescence Enhancement in Diagnostics for Clinical Tests at Point-of-Care: A Review of Recent Technologies.
Adv Mater. 2023 Aug;35(34):e2107986. doi: 10.1002/adma.202107986. Epub 2022 Apr 24.
7
Aluminium-Based Plasmonic Sensors in Ultraviolet.
Sensors (Basel). 2021 Jun 14;21(12):4096. doi: 10.3390/s21124096.
8
Nanoscaled ZnO films used as enhanced substrates for fluorescence detection of dyes.
Chin Phys B. 2012 Mar;21(3). doi: 10.1088/1674-1056/21/3/037803.
9
Raman and Fluorescence Enhancement Approaches in Graphene-Based Platforms for Optical Sensing and Imaging.
Nanomaterials (Basel). 2021 Mar 5;11(3):644. doi: 10.3390/nano11030644.
10
Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis.
ACS Nano. 2021 Apr 27;15(4):6038-6060. doi: 10.1021/acsnano.0c10945. Epub 2021 Apr 2.

本文引用的文献

4
Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna.
Phys Rev Lett. 2006 Jul 7;97(1):017402. doi: 10.1103/PhysRevLett.97.017402.
5
Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study.
J Am Chem Soc. 2006 Jul 19;128(28):8998-9. doi: 10.1021/ja061762i.
6
Enhancement and quenching of single-molecule fluorescence.
Phys Rev Lett. 2006 Mar 24;96(11):113002. doi: 10.1103/PhysRevLett.96.113002. Epub 2006 Mar 21.
7
Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission.
Anal Biochem. 2005 Feb 15;337(2):171-94. doi: 10.1016/j.ab.2004.11.026.
8
Ultraviolet surface plasmon-coupled emission using thin aluminum films.
Anal Chem. 2004 Jul 15;76(14):4076-81. doi: 10.1021/ac040004c.
9
Tech.Sight. A technique whose time has come.
Science. 2002 Apr 19;296(5567):557-9. doi: 10.1126/science.296.5567.557.
10
Radiative decay engineering: biophysical and biomedical applications.
Anal Biochem. 2001 Nov 1;298(1):1-24. doi: 10.1006/abio.2001.5377.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验