Cortijo-Campos Sandra, Ramírez-Jiménez Rafael, de Andrés Alicia
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain.
Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida Universidad 30, Leganés, 28911 Madrid, Spain.
Nanomaterials (Basel). 2021 Mar 5;11(3):644. doi: 10.3390/nano11030644.
The search for novel platforms and metamaterials for the enhancement of optical and particularly Raman signals is still an objective since optical techniques offer affordable, noninvasive methods with high spatial resolution and penetration depth adequate to detect and image a large variety of systems, from 2D materials to molecules in complex media and tissues. Definitely, plasmonic materials produce the most efficient enhancement through the surface-enhanced Raman scattering (SERS) process, allowing single-molecule detection, and are the most studied ones. Here we focus on less explored aspects of SERS such as the role of the inter-nanoparticle (NP) distance and the ultra-small NP size limit (down to a few nm) and on novel approaches involving graphene and graphene-related materials. The issues on reproducibility and homogeneity for the quantification of the probe molecules will also be discussed. Other light enhancement mechanisms, in particular resonant and interference Raman scatterings, as well as the platforms that allow combining several of them, are presented in this review with a special focus on the possibilities that graphene offers for the design and fabrication of novel architectures. Recent fluorescence enhancement platforms and strategies, so important for bio-detection and imaging, are reviewed as well as the relevance of graphene oxide and graphene/carbon nanodots in the field.
寻找用于增强光学信号尤其是拉曼信号的新型平台和超材料仍然是一个目标,因为光学技术提供了经济实惠、非侵入性的方法,具有高空间分辨率和足够的穿透深度,足以检测和成像从二维材料到复杂介质和组织中的分子等各种各样的系统。毫无疑问,等离子体材料通过表面增强拉曼散射(SERS)过程产生最有效的增强效果,可实现单分子检测,并且是研究最多的材料。在此,我们关注SERS较少被探索的方面,例如纳米颗粒间距离的作用和超小纳米颗粒尺寸极限(低至几纳米),以及涉及石墨烯和石墨烯相关材料的新方法。还将讨论探针分子定量中的重现性和均匀性问题。本综述介绍了其他光增强机制,特别是共振拉曼散射和干涉拉曼散射,以及能够将其中几种机制结合起来的平台,并特别关注石墨烯为新型结构的设计和制造所提供的可能性。还综述了近期对生物检测和成像非常重要的荧光增强平台和策略,以及氧化石墨烯和石墨烯/碳纳米点在该领域的相关性。