Suppr超能文献

用于预测醇乙氧基化物水生生态毒性的前馈人工神经网络。

A feed-forward artificial neural network for prediction of the aquatic ecotoxicity of alcohol ethoxylate.

作者信息

Meng Yaobin, Lin Bin-Le

机构信息

National Institute of Advanced Industrial Science and Technology, Research Center for Chemical Risk Management, 16-1 Onogawa, Tsukuba City 305-8569, Japan.

出版信息

Ecotoxicol Environ Saf. 2008 Sep;71(1):172-86. doi: 10.1016/j.ecoenv.2007.06.011. Epub 2007 Aug 7.

Abstract

A feed-forward artificial neural network (ANN) has been developed for predicting the aquatic ecotoxicity of alcohol ethoxylate (AE), a non-ionic surfactant comprising a variety of homologues. Trained with previously reported ecotoxicity data, the ANN utilizes both molecular characteristics (alkyl chain length, branching extent in alkyl chain, and ethoxylate (EO) number) and exposure features (effect endpoint, test duration, test type, and species taxon) as inputs to predict the ecotoxicity. The ANN predicted an increase in ecotoxicity for homologues with a longer or less-branched alkyl chain, or those with fewer EO units. But for long alkyl chain (>14) homologues, the ecotoxicity increase was predicted by the ANN to level off, which is obscured by existing quantitative structure-activity relationships (QSARs). A "leave-one-out" cross-validation process indicated that the prediction accuracy was within a factor of 5 with 90% probability. This research demonstrated that the current ANN covers a wider application domain with respect to the homologue range and a variety of exposure features without compromising on predictive accuracy.

摘要

已开发出一种前馈人工神经网络(ANN),用于预测醇乙氧基化物(AE)的水生生态毒性,AE是一种包含多种同系物的非离子表面活性剂。该人工神经网络利用先前报告的生态毒性数据进行训练,将分子特征(烷基链长度、烷基链分支程度和乙氧基化物(EO)数量)和暴露特征(效应终点、试验持续时间、试验类型和物种分类)作为输入来预测生态毒性。人工神经网络预测,对于具有较长或分支较少的烷基链的同系物,或具有较少EO单元的同系物,其生态毒性会增加。但对于长烷基链(>14)的同系物,人工神经网络预测其生态毒性增加将趋于平稳,这一点在现有的定量构效关系(QSAR)中并不明显。“留一法”交叉验证过程表明,预测准确率在90%的概率下为5倍以内。这项研究表明,当前的人工神经网络在同系物范围和各种暴露特征方面涵盖了更广泛的应用领域,同时不影响预测准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验