Suppr超能文献

神经调质而非活性控制离子电流的协同表达。

Neuromodulators, not activity, control coordinated expression of ionic currents.

作者信息

Khorkova Olga, Golowasch Jorge

机构信息

Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.

出版信息

J Neurosci. 2007 Aug 8;27(32):8709-18. doi: 10.1523/JNEUROSCI.1274-07.2007.

Abstract

Electrical activity in identical neurons across individuals is often remarkably similar and stable over long periods. However, the ionic currents that determine the electrical activity of these neurons show wide animal-to-animal amplitude variability. This seemingly random variability of individual current amplitudes may obscure mechanisms that globally reduce variability and that contribute to the generation of similar neuronal output. One such mechanism could be the coordinated regulation of ionic current expression. Studying identified neurons of the Cancer borealis pyloric network, we discovered that the removal of neuromodulatory input to this network (decentralization) was accompanied by the loss of the coordinated regulation of ionic current levels. Additionally, decentralization induced large changes in the levels of several ionic currents. The loss of coregulation and the changes in current levels were prevented by continuous exogenous application of proctolin, an endogenous neuromodulatory peptide, to the pyloric network. This peptide does not exert fast regulatory actions on any of the currents affected by decentralization. We conclude that neuromodulatory inputs to the pyloric network have a novel role in the regulation of ionic current expression. They can control, over the long term, the coordinated expression of multiple voltage-gated ionic currents that they do not acutely modulate. Our results suggest that current coregulation places constraints on neuronal intrinsic plasticity and the ability of a network to respond to perturbations. The loss of conductance coregulation may be a mechanism to facilitate the recovery of function.

摘要

个体间相同神经元的电活动通常非常相似,且在很长一段时间内保持稳定。然而,决定这些神经元电活动的离子电流在不同动物之间表现出很大的幅度变异性。单个电流幅度这种看似随机的变异性可能会掩盖那些在全局上降低变异性并有助于产生相似神经元输出的机制。一种这样的机制可能是离子电流表达的协调调节。通过研究北极癌幽门网络中已识别的神经元,我们发现去除该网络的神经调节输入(去神经支配)伴随着离子电流水平协调调节的丧失。此外,去神经支配导致几种离子电流水平发生巨大变化。通过持续向幽门网络外源性应用内源性神经调节肽普罗托林,可以防止共调节的丧失和电流水平的变化。这种肽对受去神经支配影响的任何电流都不发挥快速调节作用。我们得出结论,幽门网络的神经调节输入在离子电流表达的调节中具有新的作用。它们可以长期控制多种电压门控离子电流的协调表达,而这些电流它们并不会急性调节。我们的结果表明,当前的共调节对神经元的内在可塑性以及网络对扰动的反应能力施加了限制。电导共调节的丧失可能是促进功能恢复的一种机制。

相似文献

1
Neuromodulators, not activity, control coordinated expression of ionic currents.
J Neurosci. 2007 Aug 8;27(32):8709-18. doi: 10.1523/JNEUROSCI.1274-07.2007.
3
Ionic current correlations underlie the global tuning of large numbers of neuronal activity attributes.
J Neurosci. 2012 Sep 26;32(39):13380-8. doi: 10.1523/JNEUROSCI.6500-11.2012.
5
Recovery of rhythmic activity in a central pattern generator: analysis of the role of neuromodulator and activity-dependent mechanisms.
J Comput Neurosci. 2011 Nov;31(3):685-99. doi: 10.1007/s10827-011-0338-8. Epub 2011 May 15.
7
Graded Transmission without Action Potentials Sustains Rhythmic Activity in Some But Not All Modulators That Activate the Same Current.
J Neurosci. 2018 Oct 17;38(42):8976-8988. doi: 10.1523/JNEUROSCI.2632-17.2018. Epub 2018 Sep 5.
8
Neuromodulation and flexibility in Central Pattern Generator networks.
Curr Opin Neurobiol. 2011 Oct;21(5):685-92. doi: 10.1016/j.conb.2011.05.011. Epub 2011 Jun 7.
9
Activation mechanism of a neuromodulator-gated pacemaker ionic current.
J Neurophysiol. 2017 Jul 1;118(1):595-609. doi: 10.1152/jn.00743.2016. Epub 2017 Apr 26.

引用本文的文献

2
Homeostatic regulation of a motor circuit through temperature sensing rather than activity sensing.
Curr Biol. 2025 May 19;35(10):2256-2265.e3. doi: 10.1016/j.cub.2025.03.054. Epub 2025 Apr 12.
3
Homeostatic regulation of a motor circuit through temperature sensing rather than activity sensing.
bioRxiv. 2025 Jan 11:2025.01.10.632419. doi: 10.1101/2025.01.10.632419.
5
Dimensionality reduction of neuronal degeneracy reveals two interfering physiological mechanisms.
PNAS Nexus. 2024 Sep 19;3(10):pgae415. doi: 10.1093/pnasnexus/pgae415. eCollection 2024 Oct.
6
Convergent Comodulation Reduces Interindividual Variability of Circuit Output.
eNeuro. 2024 Sep 10;11(9). doi: 10.1523/ENEURO.0167-24.2024. Print 2024 Sep.
7
Oscillatory network spontaneously recovers both activity and robustness after prolonged removal of neuromodulators.
Front Cell Neurosci. 2023 Dec 14;17:1280575. doi: 10.3389/fncel.2023.1280575. eCollection 2023.
8
Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit.
Front Cell Neurosci. 2023 Oct 18;17:1263591. doi: 10.3389/fncel.2023.1263591. eCollection 2023.
9
Motor neurons within a network use cell-type specific feedback mechanisms to constrain relationships among ion channel mRNAs.
J Neurophysiol. 2023 Sep 1;130(3):569-584. doi: 10.1152/jn.00098.2023. Epub 2023 Aug 2.
10
Biological complexity facilitates tuning of the neuronal parameter space.
PLoS Comput Biol. 2023 Jul 3;19(7):e1011212. doi: 10.1371/journal.pcbi.1011212. eCollection 2023 Jul.

本文引用的文献

1
Modeling Recovery of Rhythmic Activity: Hypothesis for the role of a calcium pump.
Neurocomputing (Amst). 2007 Jun;70(10-12):1657-1662. doi: 10.1016/j.neucom.2006.10.051.
2
Electrical activity in early neuronal development.
Nature. 2006 Dec 7;444(7120):707-12. doi: 10.1038/nature05300.
3
Regulation of sodium and calcium channels by signaling complexes.
J Recept Signal Transduct Res. 2006;26(5-6):577-98. doi: 10.1080/10799890600915100.
4
Ionic mechanism underlying recovery of rhythmic activity in adult isolated neurons.
J Neurophysiol. 2006 Oct;96(4):1860-76. doi: 10.1152/jn.00385.2006. Epub 2006 Jun 28.
5
Homeostatic control of neural activity: from phenomenology to molecular design.
Annu Rev Neurosci. 2006;29:307-23. doi: 10.1146/annurev.neuro.28.061604.135751.
7
Signaling protein complexes associated with neuronal ion channels.
Nat Neurosci. 2006 Mar;9(3):305-10. doi: 10.1038/nn1647.
9
Variable channel expression in identified single and electrically coupled neurons in different animals.
Nat Neurosci. 2006 Mar;9(3):356-62. doi: 10.1038/nn1639. Epub 2006 Jan 29.
10
MPS-1 is a K+ channel beta-subunit and a serine/threonine kinase.
Nat Neurosci. 2005 Nov;8(11):1503-9. doi: 10.1038/nn1557. Epub 2005 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验