Fyon Arthur, Franci Alessio, Sacré Pierre, Drion Guillaume
Department of Electrical Engineering and Computer Science, University of Liège, Liège B-4000, Belgium.
WEL-T Department, WEL Research Institute, Wavre B-1300, Belgium.
PNAS Nexus. 2024 Sep 19;3(10):pgae415. doi: 10.1093/pnasnexus/pgae415. eCollection 2024 Oct.
Neuronal systems maintain stable functions despite large variability in their physiological components. Ion channel expression, in particular, is highly variable in neurons exhibiting similar electrophysiological phenotypes, which raises questions regarding how specific ion channel subsets reliably shape intrinsic properties of neurons. Here, we use detailed conductance-based modeling to explore how stable neuronal function is achieved despite variability in channel composition among neurons. Using dimensionality reduction, we uncover two principal dimensions in the channel conductance space that capture most of the variance of the observed variability. These two dimensions correspond to two sources of variability that originate from distinct physiologically relevant mechanisms underlying the regulation of neuronal activity, providing quantitative insights into how channel composition is linked to the electrophysiological activity of neurons. These insights allow us to understand and design a model-independent, reliable neuromodulation rule for variable neuronal populations.
尽管神经元系统的生理成分存在很大差异,但它们仍能维持稳定的功能。特别是离子通道表达,在表现出相似电生理表型的神经元中高度可变,这就引发了关于特定离子通道亚群如何可靠地塑造神经元内在特性的问题。在这里,我们使用基于详细电导的模型来探讨尽管神经元之间的通道组成存在差异,但如何实现稳定的神经元功能。通过降维,我们在通道电导空间中发现了两个主要维度,它们捕获了观察到的变异性的大部分差异。这两个维度对应于两种变异性来源,它们源自神经元活动调节背后不同的生理相关机制,为通道组成如何与神经元的电生理活动相关联提供了定量见解。这些见解使我们能够理解并设计一种与模型无关的、适用于可变神经元群体的可靠神经调节规则。