Suppr超能文献

神经调节可独立决定口器胃神经节运动神经元中相关通道的表达和电导水平。

Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion.

机构信息

Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, New Jersey 07102, USA.

出版信息

J Neurophysiol. 2012 Jan;107(2):718-27. doi: 10.1152/jn.00622.2011. Epub 2011 Oct 12.

Abstract

Neuronal identity depends on the regulated expression of numerous molecular components, especially ionic channels, which determine the electrical signature of a neuron. Such regulation depends on at least two key factors, activity itself and neuromodulatory input. Neuronal electrical activity can modify the expression of ionic currents in homeostatic or nonhomeostatic fashion. Neuromodulators typically modify activity by regulating the properties or expression levels of subsets of ionic channels. In the stomatogastric system of crustaceans, both types of regulation have been demonstrated. Furthermore, the regulation of the coordinated expression of ionic currents and the channels that carry these currents has been recently reported in diverse neuronal systems, with neuromodulators not only controlling the absolute levels of ionic current expression but also, over long periods of time, appearing to modify their correlated expression. We hypothesize that neuromodulators may regulate the correlated expression of ion channels at multiple levels and in a cell-type-dependent fashion. We report that in two identified neuronal types, three ionic currents are linearly correlated in a pairwise manner, suggesting their coexpression or direct interactions, under normal neuromodulatory conditions. In each cell, some currents remain correlated after neuromodulatory input is removed, whereas the correlations between the other pairs are either lost or altered. Interestingly, in each cell, a different suite of currents change their correlation. At the transcript level we observe distinct alterations in correlations between channel mRNA amounts, including one of the cell types lacking a correlation under normal neuromodulatory conditions and then gaining the correlation when neuromodulators are removed. Synaptic activity does not appear to contribute, with one possible exception, to the correlated expression of either ionic currents or of the transcripts that code for the respective channels. We conclude that neuromodulators regulate the correlated expression of ion channels at both the transcript and the protein levels.

摘要

神经元的身份取决于众多分子成分的调节表达,尤其是离子通道,它们决定了神经元的电信号特征。这种调节依赖于至少两个关键因素,即活动本身和神经调质输入。神经元的电活动可以以稳态或非稳态的方式改变离子电流的表达。神经调质通常通过调节离子通道亚群的特性或表达水平来调节活动。在甲壳类动物的口胃神经系统中,已经证明了这两种调节方式。此外,最近在不同的神经元系统中也报道了离子电流和携带这些电流的通道的协调表达的调节,神经调质不仅控制离子电流表达的绝对水平,而且在长时间内似乎还改变它们的相关表达。我们假设神经调质可能在多个水平上调节离子通道的相关表达,并以细胞类型依赖性的方式进行调节。我们报告说,在两种已鉴定的神经元类型中,三种离子电流以两两线性相关的方式表达,这表明它们在正常神经调质条件下共表达或直接相互作用。在每种细胞中,一些电流在神经调质输入去除后仍然相关,而其他对的相关性则丢失或改变。有趣的是,在每种细胞中,不同的电流套件改变它们的相关性。在转录水平上,我们观察到通道 mRNA 量之间相关性的明显变化,包括一种细胞类型在正常神经调质条件下缺乏相关性,然后在去除神经调质时获得相关性。突触活动似乎没有对离子电流或编码相应通道的转录本的相关表达做出贡献,除了一种可能的例外情况。我们得出结论,神经调质在转录和蛋白水平上调节离子通道的相关表达。

相似文献

2
Ionic current correlations underlie the global tuning of large numbers of neuronal activity attributes.
J Neurosci. 2012 Sep 26;32(39):13380-8. doi: 10.1523/JNEUROSCI.6500-11.2012.
3
Co-variation of ionic conductances supports phase maintenance in stomatogastric neurons.
J Comput Neurosci. 2012 Aug;33(1):77-95. doi: 10.1007/s10827-011-0375-3. Epub 2011 Dec 3.
4
Motor neurons within a network use cell-type specific feedback mechanisms to constrain relationships among ion channel mRNAs.
J Neurophysiol. 2023 Sep 1;130(3):569-584. doi: 10.1152/jn.00098.2023. Epub 2023 Aug 2.
5
Functional consequences of animal-to-animal variation in circuit parameters.
Nat Neurosci. 2009 Nov;12(11):1424-30. doi: 10.1038/nn.2404. Epub 2009 Oct 18.
6
Activation mechanism of a neuromodulator-gated pacemaker ionic current.
J Neurophysiol. 2017 Jul 1;118(1):595-609. doi: 10.1152/jn.00743.2016. Epub 2017 Apr 26.
7
Frequency-Dependent Action of Neuromodulation.
eNeuro. 2021 Nov 9;8(6). doi: 10.1523/ENEURO.0338-21.2021. Print 2021 Nov-Dec.
8
Neuromodulators, not activity, control coordinated expression of ionic currents.
J Neurosci. 2007 Aug 8;27(32):8709-18. doi: 10.1523/JNEUROSCI.1274-07.2007.
9
Voltage Dependence of a Neuromodulator-Activated Ionic Current.
eNeuro. 2016 May 12;3(2). doi: 10.1523/ENEURO.0038-16.2016. eCollection 2016 Mar-Apr.

引用本文的文献

2
Antifragile control systems in neuronal processing: a sensorimotor perspective.
Biol Cybern. 2025 Feb 15;119(2-3):7. doi: 10.1007/s00422-025-01003-7.
4
Dimensionality reduction of neuronal degeneracy reveals two interfering physiological mechanisms.
PNAS Nexus. 2024 Sep 19;3(10):pgae415. doi: 10.1093/pnasnexus/pgae415. eCollection 2024 Oct.
5
Convergent Comodulation Reduces Interindividual Variability of Circuit Output.
eNeuro. 2024 Sep 10;11(9). doi: 10.1523/ENEURO.0167-24.2024. Print 2024 Sep.
6
Oscillatory network spontaneously recovers both activity and robustness after prolonged removal of neuromodulators.
Front Cell Neurosci. 2023 Dec 14;17:1280575. doi: 10.3389/fncel.2023.1280575. eCollection 2023.
7
Modulation by Neuropeptides with Overlapping Targets Results in Functional Overlap in Oscillatory Circuit Activation.
J Neurosci. 2024 Jan 3;44(1):e1201232023. doi: 10.1523/JNEUROSCI.1201-23.2023.
8
Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit.
Front Cell Neurosci. 2023 Oct 18;17:1263591. doi: 10.3389/fncel.2023.1263591. eCollection 2023.
9
A biophysical perspective on the resilience of neuronal excitability across timescales.
Nat Rev Neurosci. 2023 Oct;24(10):640-652. doi: 10.1038/s41583-023-00730-9. Epub 2023 Aug 24.
10
Motor neurons within a network use cell-type specific feedback mechanisms to constrain relationships among ion channel mRNAs.
J Neurophysiol. 2023 Sep 1;130(3):569-584. doi: 10.1152/jn.00098.2023. Epub 2023 Aug 2.

本文引用的文献

1
Genetic variation shapes protein networks mainly through non-transcriptional mechanisms.
PLoS Biol. 2011 Sep;9(9):e1001144. doi: 10.1371/journal.pbio.1001144. Epub 2011 Sep 6.
2
Endogenous ion channel complexes: the NMDA receptor.
Biochem Soc Trans. 2011 Jun;39(3):707-18. doi: 10.1042/BST0390707.
3
Ion channels and transporters in cancer. 3. Ion channels in the tumor cell-microenvironment cross talk.
Am J Physiol Cell Physiol. 2011 Oct;301(4):C762-71. doi: 10.1152/ajpcell.00113.2011. Epub 2011 May 11.
4
AKAP79/150 signal complexes in G-protein modulation of neuronal ion channels.
J Neurosci. 2011 May 11;31(19):7199-211. doi: 10.1523/JNEUROSCI.4446-10.2011.
5
Imbalance of ionic conductances contributes to diverse symptoms of demyelination.
Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20602-9. doi: 10.1073/pnas.1013798107. Epub 2010 Oct 25.
6
The molecular and gene regulatory signature of a neuron.
Trends Neurosci. 2010 Oct;33(10):435-45. doi: 10.1016/j.tins.2010.05.006.
7
Generation and preservation of the slow underlying membrane potential oscillation in model bursting neurons.
J Neurophysiol. 2010 Sep;104(3):1589-602. doi: 10.1152/jn.00444.2010. Epub 2010 Jun 30.
9
Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current.
Front Behav Neurosci. 2010 May 18;4:21. doi: 10.3389/fnbeh.2010.00021. eCollection 2010.
10
A hierarchy of cell intrinsic and target-derived homeostatic signaling.
Neuron. 2010 Apr 29;66(2):220-34. doi: 10.1016/j.neuron.2010.03.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验